1-1.

The shaft is supported by a smooth thrust bearing at B and a journal bearing at C. Determine the resultant internal loadings acting on the cross section at E.

SOLUTION

Support Reactions: We will only need to compute \mathbf{C}_{y} by writing the moment equation of equilibrium about B with reference to the free-body diagram of the entire shaft, Fig. a.

$$
\varsigma+\Sigma M_{B}=0 ; \quad C_{y}(8)+400(4)-800(12)=0 \quad C_{y}=1000 \mathrm{lb}
$$

Internal Loadings: Using the result for \mathbf{C}_{y}, section $D E$ of the shaft will be considered. Referring to the free-body diagram, Fig. b,

$$
\begin{aligned}
& \xrightarrow{+} \Sigma F_{x}=0 ; \quad N_{E}=0 \\
& +\uparrow \Sigma F_{y}=0 ; \quad V_{E}+1000-800=0 \quad V_{E}=-200 \mathrm{lb} \\
& \varsigma+\Sigma M_{E}=0 ; 1000(4)-800(8)-M_{E}=0 \\
& \quad M_{E}=-2400 \mathrm{lb} \cdot \mathrm{ft}=-2.40 \mathrm{kip} \cdot \mathrm{ft}
\end{aligned}
$$

Ans.

Ans.

Ans.
The negative signs indicates that \mathbf{V}_{E} and \mathbf{M}_{E} act in the opposite sense to that shown on the free-body diagram.

(a)

(b)

Ans:

$N_{E}=0, V_{E}=-200 \mathrm{lb}, M_{E}=-2.40 \mathrm{kip} \cdot \mathrm{ft}$

1-2.

Determine the resultant internal normal and shear force in the member at (a) section $a-a$ and (b) section $b-b$, each of which passes through the centroid A. The $500-\mathrm{lb}$ load is applied along the centroidal axis of the member.

SOLUTION

(a)

$$
\begin{array}{ll}
\xrightarrow{+} \Sigma F_{x}=0 ; & N_{a}-500=0 \\
& N_{a}=500 \mathrm{lb} \\
+\downarrow \Sigma F_{y}=0 ; & V_{a}=0
\end{array}
$$

(b)

$$
\begin{array}{ll}
\searrow^{+} \Sigma F_{x}=0 ; & N_{b}-500 \cos 30^{\circ}=0 \\
& N_{b}=433 \mathrm{lb} \\
+\nearrow \Sigma F_{y}=0 ; & \\
& V_{b}-500 \sin 30^{\circ}=0 \\
& V_{b}=250 \mathrm{lb}
\end{array}
$$

Ans.

Ans.

Ans.

Ans:
(a) $N_{a}=500 \mathrm{lb}, V_{a}=0$,
(b) $N_{b}=433 \mathrm{lb}, V_{b}=250 \mathrm{lb}$

1-3.

Determine the resultant internal loadings acting on section $b-b$ through the centroid C on the beam.

SOLUTION

Support Reaction:

$\varsigma+\Sigma M_{A}=0 ; \quad N_{B}\left(9 \sin 30^{\circ}\right)-\frac{1}{2}(900)(9)(3)=0$

$$
N_{B}=2700 \mathrm{lb}
$$

Equations of Equilibrium: For section $b-b$

$$
\begin{gathered}
+\Sigma F_{x}=0 ; \quad V_{b-b}+\frac{1}{2}(300)(3) \sin 30^{\circ}-2700=0 \\
V_{b-b}=2475 \mathrm{lb}=2.475 \mathrm{kip}
\end{gathered}
$$

$\zeta+\Sigma M_{C}=0 ; \quad 2700\left(3 \sin 30^{\circ}\right)$
$-\frac{1}{2}(300)(3)(1)-M_{b-b}=0$
$M_{b-b}=3600 \mathrm{lb} \cdot \mathrm{ft}=3.60 \mathrm{kip} \cdot \mathrm{ft}$
Ans.

$$
+\uparrow \Sigma F_{y}=0 ; \quad N_{b-b}-\frac{1}{2}(300)(3) \cos 30^{\circ}=0
$$

$$
N_{b-b}=389.7 \mathrm{lb}=0.390 \mathrm{kip}
$$

Ans.

Ans.

> Ans:
> $V_{b-b}=2.475 \mathrm{kip}$,
> $N_{b-b}=0.390 \mathrm{kip}$,
> $M_{b-b}=3.60 \mathrm{kip} \cdot \mathrm{ft}$

*1-4.

The shaft is supported by a smooth thrust bearing at A and a smooth journal bearing at B. Determine the resultant internal loadings acting on the cross section at C.

SOLUTION

Support Reactions: We will only need to compute \mathbf{B}_{y} by writing the moment equation of equilibrium about A with reference to the free-body diagram of the entire shaft, Fig. a.
$\varsigma_{\hookrightarrow}+\Sigma M_{A}=0 ; \quad B_{y}(4.5)-600(2)(2)-900(6)=0 \quad B_{y}=1733.33 \mathrm{~N}$
Internal Loadings: Using the result of \mathbf{B}_{y}, section $C D$ of the shaft will be considered. Referring to the free-body diagram of this part, Fig. b,
$\xrightarrow{+} \Sigma F_{x}=0 ; \quad N_{C}=0$
$+\uparrow \Sigma F_{y}=0 ; \quad V_{C}-600(1)+1733.33-900=0 \quad V_{C}=-233 \mathrm{~N}$
$\varsigma+\Sigma M_{C}=0 ; \quad 1733.33(2.5)-600(1)(0.5)-900(4)-M_{C}=0$

$$
M_{C}=433 \mathrm{~N} \cdot \mathrm{~m}
$$

Ans.
Ans.

(a)

(b)

> Ans:
> $N_{C}=0$,
> $V_{C}=-233 \mathrm{~N}$, $M_{C}=433 \mathrm{~N} \cdot \mathrm{~m}$

1-5.

Determine the resultant internal loadings acting on the cross section at point B.

SOLUTION

$$
\begin{array}{ll}
\xrightarrow{+} \Sigma F_{x}=0 ; & N_{B}=0 \\
+\uparrow \Sigma F_{y}=0 ; & V_{B}-\frac{1}{2}(48)(12)=0 \\
& V_{B}=288 \mathrm{lb} \\
C+\Sigma M_{B}=0 ; & -M_{B}-\frac{1}{2}(48)(12)(4)=0 \\
& M_{B}=-1152 \mathrm{lb} \cdot \mathrm{ft}=-1.15 \mathrm{kip} \cdot \mathrm{ft}
\end{array}
$$

Ans.

Ans.

Ans.

Ans:

$N_{B}=0$,
$V_{B}=288 \mathrm{lb}$,
$M_{B}=-1.15 \mathrm{kip} \cdot \mathrm{ft}$

1-6.

Determine the resultant internal loadings on the cross section at point D.

SOLUTION

Support Reactions: Member $B C$ is the two force member.
$\varsigma+\Sigma M_{A}=0 ; \quad \frac{4}{5} F_{B C}(1.5)-1.875(0.75)=0$

$$
F_{B C}=1.1719 \mathrm{kN}
$$

$$
A_{y}=0.9375 \mathrm{kN}
$$

$$
A_{x}=0.7031 \mathrm{kN}
$$

Equations of Equilibrium: For point D

$$
\begin{array}{r}
+\Sigma F_{x}=0 ; \quad N_{D}-0.7031=0 \\
N_{D}=0.703 \mathrm{kN}
\end{array}
$$

$$
\varsigma+\Sigma M_{D}=0 ; \quad M_{D}+0.625(0.25)-0.9375(0.5)=0
$$

$$
+\uparrow \Sigma F_{y}=0 ; \quad A_{y}+\frac{4}{5}(1.1719)-1.875=0
$$

$$
\xrightarrow{+} \Sigma F_{x}=0 ; \quad \frac{3}{5}(1.1719)-A_{x}=0
$$

$$
+\uparrow \Sigma F_{y}=0 ; \quad 0.9375-0.625-V_{D}=0
$$

$$
V_{D}=0.3125 \mathrm{kN}
$$

$$
M_{D}=0.3125 \mathrm{kN} \cdot \mathrm{~m}
$$

Ans.

Ans.

Ans.

Ans:
$N_{D}=0.703 \mathrm{kN}$,
$V_{D}=0.3125 \mathrm{kN}$,
$M_{D}=0.3125 \mathrm{kN} \cdot \mathrm{m}$

1-7.

Determine the resultant internal loadings at cross sections at points E and F on the assembly.

SOLUTION

Support Reactions: Member $B C$ is the two-force member.

$$
\begin{gathered}
\varsigma+\Sigma M_{A}=0 ; \quad \frac{4}{5} F_{B C}(1.5)-1.875(0.75)=0 \\
F_{B C}=1.1719 \mathrm{kN} \\
+\uparrow \Sigma F_{y}=0 ; \quad A_{y}+\frac{4}{5}(1.1719)-1.875=0 \\
A_{y}=0.9375 \mathrm{kN} \\
\xrightarrow[\rightarrow]{ } \Sigma F_{x}=0 ; \quad \frac{3}{5}(1.1719)-A_{x}=0 \\
A_{x}=0.7031 \mathrm{kN}
\end{gathered}
$$

Equations of Equilibrium: For point F

$$
\begin{array}{cc}
+\swarrow \Sigma F_{x^{\prime}}=0 ; & N_{F}-1.1719=0 \\
& N_{F}=1.17 \mathrm{kN} \\
\nwarrow+\Sigma F_{y^{\prime}}=0 ; & V_{F}=0 \\
\varsigma+\Sigma M_{F}=0 ; & M_{F}=0
\end{array}
$$

Equations of Equilibrium: For point E

$$
\begin{gathered}
\pm \Sigma F_{x}=0 ; \quad N_{E}-\frac{3}{5}(1.1719)=0 \\
N_{E}=0.703 \mathrm{kN} \\
+\uparrow \Sigma F_{y}=0 ; \quad V_{E}-0.625+\frac{4}{5}(1.1719)=0 \\
V_{E}=-0.3125 \mathrm{kN} \\
C+\Sigma M_{E}=0 ; \quad-M_{E}-0.625(0.25)+\frac{4}{5}(1.1719)(0.5)=0 \\
M_{E}=0.3125 \mathrm{kN} \cdot \mathrm{~m}
\end{gathered}
$$

Ans.
Ans.
Ans.

Ans.

Ans.

Ans.

Negative sign indicates that \mathbf{V}_{E} acts in the opposite direction to that shown on FBD.
Ans:
$N_{F}=1.17 \mathrm{kN}$,
$V_{F}=0$,
$M_{F}=0$,
$N_{E}=0.703 \mathrm{kN}$,
$V_{E}=-0.3125 \mathrm{kN}$,
$M_{E}=0.3125 \mathrm{kN} \cdot \mathrm{m}$

*1-8.

The beam supports the distributed load shown. Determine the resultant internal loadings acting on the cross section at point C. Assume the reactions at the supports A and B are vertical.

SOLUTION

Support Reactions: Referring to the FBD of the entire beam, Fig. a,
$\varsigma+\Sigma M_{A}=0 ; \quad B_{y}(6)-\frac{1}{2}(4)(6)(2)=0 \quad B_{y}=4.00 \mathrm{kN}$
Internal Loadings: Referring to the FBD of the right segment of the beam sectioned through C, Fig. b,

$$
\begin{array}{ll}
\xrightarrow{+} \Sigma F_{x}=0 ; & N_{C}=0 \\
+\uparrow \Sigma F_{y}=0 ; & V_{C}+4.00-\frac{1}{2}(3)(4.5)=0 \quad V_{C}=2.75 \mathrm{kN} \\
C+\Sigma M_{C}=0 ; & 4.00(4.5)-\frac{1}{2}(3)(4.5)(1.5)-M_{C}=0
\end{array}
$$

Ans.
Ans.

$$
M_{C}=7.875 \mathrm{kN} \cdot \mathrm{~m}
$$

Ans.

Ans:
$N_{C}=0$,
$V_{C}=2.75 \mathrm{kN}$,
$M_{C}=7.875 \mathrm{kN} \cdot \mathrm{m}$

$1-9$.

The beam supports the distributed load shown. Determine the resultant internal loadings acting on the cross section at point D. Assume the reactions at the supports A and B are vertical.

SOLUTION

Support Reactions: Referring to the FBD of the entire beam, Fig. a,
$\varsigma+\Sigma M_{A}=0 ; \quad B_{y}(6)-\frac{1}{2}(4)(6)(2)=0 \quad B_{y}=4.00 \mathrm{kN}$
Internal Loadings: Referring to the FBD of the right segment of the beam sectioned through D, Fig. b,

$$
\begin{array}{ll}
\xrightarrow{+} \Sigma F_{x}=0 ; & N_{D}=0 \\
+\uparrow \Sigma F_{y}=0 ; & V_{D}+4.00-\frac{1}{2}(1.00)(1.5)=0 \quad V_{D}=-3.25 \mathrm{kN} \\
\varsigma+\Sigma M_{D}=0 ; & 4.00(1.5)-\frac{1}{2}(1.00)(1.5)(0.5)-M_{D}=0
\end{array}
$$

Ans.
Ans.

$$
M_{D}=5.625 \mathrm{kN} \cdot \mathrm{~m}
$$

Ans.
The negative sign indicates that \mathbf{V}_{D} acts in the sense opposite to that shown on the FBD.

Ans:
$N_{D}=0$,
$V_{D}=-3.25 \mathrm{kN}$,
$M_{D}=5.625 \mathrm{kN} \cdot \mathrm{m}$

1-10.

The boom $D F$ of the jib crane and the column $D E$ have a uniform weight of $50 \mathrm{lb} / \mathrm{ft}$. If the supported load is 300 lb , determine the resultant internal loadings in the crane on cross sections at points A, B, and C.

SOLUTION

Equations of Equilibrium: For point A

$$
\begin{array}{cc}
\pm \Sigma F_{x}=0 ; & N_{A}=0 \\
+\uparrow \Sigma F_{y}=0 ; & V_{A}-150-300=0 \\
& V_{A}=450 \mathrm{lb} \\
\varsigma+\Sigma M_{A}=0 ; & -M_{A}-150(1.5)-300(3)=0 \\
& M_{A}=-1125 \mathrm{lb} \cdot \mathrm{ft}=-1.125 \mathrm{kip} \cdot \mathrm{ft}
\end{array}
$$

Ans.

Ans.

Ans.

Negative sign indicates that M_{A} acts in the opposite direction to that shown on FBD.
Equations of Equilibrium: For point B

$$
\begin{array}{rc}
\pm \Sigma F_{x}=0 ; & N_{B}=0 \\
+\uparrow \Sigma F_{y}=0 ; & V_{B}-550-300=0 \\
& V_{B}=850 \mathrm{lb}
\end{array}
$$

$$
M_{B}=-6325 \mathrm{lb} \cdot \mathrm{ft}=-6.325 \mathrm{kip} \cdot \mathrm{ft}^{\mathrm{t}}
$$

Ans.

Ans.

$$
\varsigma+\Sigma M_{B}=0 ;-M_{B}-550(5.5)-300(11)=0
$$

Ans.
Negative sign indicates that M_{B} acts in the opposite direction to that shown on FBD.
Equations of Equilibrium: For point C

$$
\begin{array}{cc}
\pm \Sigma F_{x}=0 ; & V_{C}=0 \\
+\uparrow \Sigma F_{y}=0 ; & -N_{C}-250-650-300=0 \\
& N_{C}=-1200 \mathrm{lb}=-1.20 \mathrm{kip} \\
\varsigma+\Sigma M_{C}=0 ; & -M_{C}-650(6.5)-300(13)=0 \\
& M_{C}=-8125 \mathrm{lb} \cdot \mathrm{ft}=-8.125 \mathrm{kip} \cdot \mathrm{ft}
\end{array}
$$

Ans.

Ans.

Ans.

Negative signs indicate that N_{C} and M_{C} act in the opposite direction to that shown on FBD.

Ans:
$N_{A}=0, V_{A}=450 \mathrm{lb}, M_{A}=-1.125 \mathrm{kip} \cdot \mathrm{ft}$,
$N_{B}=0, V_{B}=850 \mathrm{lb}, M_{B}=-6.325 \mathrm{kip} \cdot \mathrm{ft}$,
$V_{C}=0, N_{C}=-1.20 \mathrm{kip}, M_{C}=-8.125 \mathrm{kip} \cdot \mathrm{ft}$

1-11.

Determine the resultant internal loadings acting on the cross sections at points D and E of the frame.

Member $A G$:
$\varsigma+\Sigma M_{A}=0 ; \quad \frac{4}{5} F_{B C}(3)-75(4)(5)-150 \cos 30^{\circ}(7)=0 ; \quad F_{B C}=1003.89 \mathrm{lb}$
$\varsigma+\Sigma M_{B}=0 ; \quad A_{y}(3)-75(4)(2)-150 \cos 30^{\circ}(4)=0 ; \quad A_{y}=373.20 \mathrm{lb}$
$\xrightarrow{+} \Sigma F_{x}=0 ; \quad A_{x}-\frac{3}{5}(1003.89)+150 \sin 30^{\circ}=0 ; \quad A_{x}=527.33 \mathrm{lb}$
For point D :

$$
\begin{array}{ll}
\xrightarrow{+} \Sigma F_{x}=0 ; & N_{D}+527.33=0 \\
& N_{D}=-527 \mathrm{lb} \\
+\uparrow \Sigma F_{y}=0 ; & -373.20-V_{D}=0 \\
& V_{D}=-373 \mathrm{lb} \\
\varsigma+\Sigma M_{D}=0 ; & M_{D}+373.20(1)=0 \\
& M_{D}=-373 \mathrm{lb} \cdot \mathrm{ft}
\end{array}
$$

For point E :

$$
\begin{array}{ll}
\xrightarrow{+} \Sigma F_{x}=0 ; & 150 \sin 30^{\circ}-N_{E}=0 \\
& N_{E}=75.0 \mathrm{lb} \\
+\uparrow \Sigma F_{y}=0 ; & V_{E}-75(3)-150 \cos 30^{\circ}=0 \\
& V_{E}=355 \mathrm{lb} \\
\varsigma+\Sigma M_{E}=0 ; & -M_{E}-75(3)(1.5)-150 \cos 30^{\circ}(3)=0 ; \\
& M_{E}=-727 \mathrm{lb} \cdot \mathrm{ft}
\end{array}
$$

Ans.

Ans.

Ans.

Ans.

Ans.

Ans.

> Ans:
> $N_{D}=-527 \mathrm{lb}$,
> $V_{D}=-373 \mathrm{lb}$,
> $M_{D}=-373 \mathrm{lb} \cdot \mathrm{ft}$,
> $N_{E}=75.0 \mathrm{lb}$,
> $V_{E}=355 \mathrm{lb}$,
> $M_{E}=-727 \mathrm{lb} \cdot \mathrm{ft}$
*1-12.
Determine the resultant internal loadings acting on the cross sections at points F and G of the frame.

SOLUTION

Member $A G$:

$$
\begin{gathered}
\varsigma+\Sigma M_{A}=0 ; \quad \frac{4}{5} F_{B F}(3)-300(5)-150 \cos 30^{\circ}(7)=0 \\
F_{B F}=1003.9 \mathrm{lb}
\end{gathered}
$$

For point F :

$$
\begin{array}{ll}
+\nearrow \Sigma F_{x^{\prime}}=0 ; & V_{F}=0 \\
\nwarrow+\Sigma F_{y^{\prime}}=0 ; & N_{F}-1003.9=0 \\
& N_{F}=1004 \mathrm{lb} \\
\varsigma+\Sigma M_{F}=0 ; & M_{F}=0
\end{array}
$$

For point G :

$$
\begin{array}{ll}
\pm \Sigma F_{x}=0 ; & N_{G}-150 \sin 30^{\circ}=0 \\
& N_{G}=75.0 \mathrm{lb} \\
+\uparrow \Sigma F_{y}=0 ; & V_{G}-75(1)-150 \cos 30^{\circ}=0 \\
& V_{G}=205 \mathrm{lb} \\
C+\Sigma M_{G}=0 ; & -M_{G}-75(1)(0.5)-150 \cos 30^{\circ}(1)=0 \\
& M_{G}=-167 \mathrm{lb} \cdot \mathrm{ft}
\end{array}
$$

Ans.

Ans.
Ans.

Ans.

Ans.

Ans.

```
Ans:
\(V_{F}=0\),
\(N_{F}=1004 \mathrm{lb}\),
\(M_{F}=0\),
\(N_{G}=75.0 \mathrm{lb}\),
\(V_{G}=205 \mathrm{lb}\),
\(M_{G}=-167 \mathrm{lb} \cdot \mathrm{ft}\)
```


1-13.

The blade of the hacksaw is subjected to a pretension force of $F=100 \mathrm{~N}$. Determine the resultant internal loadings acting on section $a-a$ that passes through point D.

SOLUTION

Internal Loadings: Referring to the free-body diagram of the section of the hacksaw shown in Fig. a,
$\pm \Sigma F_{x}=0 ;$

$$
N_{a-a}+100=0
$$

$$
N_{a-a}=-100 \mathrm{~N}
$$

$+\uparrow \Sigma F_{y}=0 ;$
$V_{a-a}=0$
$C+\Sigma M_{D}=0 ;$
$-M_{a-a}-100(0.15)=0$
$M_{a-a}=-15 \mathrm{~N} \cdot \mathrm{~m}$

Ans.
Ans.
Ans.
The negative sign indicates that \mathbf{N}_{a-a} and \mathbf{M}_{a-a} act in the opposite sense to that shown on the free-body diagram.

(a)

Ans:

$N_{a-a}=-100 \mathrm{~N}, V_{a-a}=0, M_{a-a}=-15 \mathrm{~N} \cdot \mathrm{~m}$

1-14.

The blade of the hacksaw is subjected to a pretension force of $F=100 \mathrm{~N}$. Determine the resultant internal loadings acting on section $b-b$ that passes through point D.

SOLUTION

Internal Loadings: Referring to the free-body diagram of the section of the hacksaw shown in Fig. a,

$$
\begin{array}{lll}
\Sigma F_{x^{\prime}}=0 ; & N_{b-b}+100 \cos 30^{\circ}=0 & N_{b-b}=-86.6 \mathrm{~N} \\
\Sigma F_{y^{\prime}}=0 ; & V_{b-b}-100 \sin 30^{\circ}=0 & V_{b-b}=50 \mathrm{~N} \\
\varsigma+\Sigma M_{D}=0 ; & -M_{b-b}-100(0.15)=0 & M_{b-b}=-15 \mathrm{~N} \cdot \mathrm{~m}
\end{array}
$$

Ans.
Ans.
Ans.
The negative sign indicates that \mathbf{N}_{b-b} and \mathbf{M}_{b-b} act in the opposite sense to that shown on the free-body diagram.

(a)

> Ans:
> $N_{b-b}=-86.6 \mathrm{~N}, V_{b-b}=50 \mathrm{~N}$,
> $M_{b-b}=-15 \mathrm{~N} \cdot \mathrm{~m}$

1-15.

The beam supports the triangular distributed load shown. Determine the resultant internal loadings on the cross section at point C. Assume the reactions at the supports A and B are vertical.

SOLUTION

Support Reactions: Referring to the FBD of the entire beam, Fig. a,
$\varsigma+\Sigma M_{B}=0 ; \quad \frac{1}{2}(0.8)(18)(6)-\frac{1}{2}(0.8)(9)(3)-A_{y}(18)=0 \quad A_{y}=1.80 \mathrm{kip}$
Internal Loadings: Referring to the FBD of the left beam segment sectioned through point C, Fig. b,
$\xrightarrow{+} \Sigma F_{x}=0 ; \quad N_{C}=0$
$+\uparrow \Sigma F_{y}=0 ; \quad 1.80-\frac{1}{2}(0.5333)(12)-V_{C}=0 \quad V_{C}=-1.40 \mathrm{kip}$
$\varsigma+\Sigma M_{C}=0 ; \quad M_{C}+\frac{1}{2}(0.5333)(12)(4)-1.80(12)=0$

$$
M_{C}=8.80 \mathrm{kip} \cdot \mathrm{ft}
$$

Ans.
Ans.

Ans.
The negative sign indicates that \mathbf{V}_{C} acts in the sense opposite to that shown on the FBD.

Ans:

$N_{C}=0$,
$V_{C}=-1.40$ kip,
$M_{C}=8.80 \mathrm{kip} \cdot \mathrm{ft}$
*1-16.
The beam supports the distributed load shown. Determine the resultant internal loadings on the cross section at points D and E. Assume the reactions at the supports A and B are vertical.

SOLUTION

Support Reactions: Referring to the FBD of the entire beam, Fig. a,
$\zeta_{C}+\Sigma M_{B}=0 ; \quad \frac{1}{2}(0.8)(18)(6)-\frac{1}{2}(0.8)(9)(3)-A_{y}(18)=0 \quad A_{y}=1.80 \mathrm{kip}$
Internal Loadings: Referring to the FBD of the left segment of the beam section through D, Fig. b,
$\xrightarrow{+} \Sigma F_{x}=0 ; \quad N_{D}=0$
$+\uparrow \Sigma F_{y}=0 ; \quad 1.80-\frac{1}{2}(0.2667)(6)-V_{D}=0 \quad V_{D}=1.00 \mathrm{kip}$

$$
\begin{aligned}
\varsigma+\Sigma M_{D}=0 ; \quad M_{D}+\frac{1}{2}(0.2667)(6)(2)-1.80(6)= & 0 \\
& M_{D}=9.20 \mathrm{kip} \cdot \mathrm{ft}
\end{aligned}
$$

Ans.

Ans.

Ans.
Referring to the FBD of the right segment of the beam sectioned through E, Fig. c,
$\xrightarrow{+} \Sigma F_{x}=0 ; \quad N_{E}=0$
$+\uparrow \Sigma F_{y}=0 ; \quad V_{E}-\frac{1}{2}(0.4)(4.5)=0 \quad V_{E}=0.900 \mathrm{kip}$
$\varsigma+\Sigma M_{E}=0 ; \quad-M_{E}-\frac{1}{2}(0.4)(4.5)(1.5)=0 \quad M_{E}=-1.35 \mathrm{kip} \cdot \mathrm{ft}$

Ans.

Ans.

Ans.

The negative sign indicates that \mathbf{M}_{E} act in the sense opposite to that shown in Fig. c.

(b)

(c)

> Ans:
> $N_{D}=0$,
> $V_{D}=1.00 \mathrm{kip}$,
> $M_{D}=9.20 \mathrm{kip} \cdot \mathrm{ft}$,
> $N_{E}=0$,
> $V_{E}=0.900 \mathrm{kip}$,
> $M_{E}=-1.35 \mathrm{kip} \cdot \mathrm{ft}$

1-17.

The shaft is supported at its ends by two bearings A and B and is subjected to the forces applied to the pulleys fixed to the shaft. Determine the resultant internal loadings acting on the cross section at point D. The $400-\mathrm{N}$ forces act in the $-z$ direction and the $200-\mathrm{N}$ and $80-\mathrm{N}$ forces act in the $+y$ direction. The journal bearings at A and B exert only y and z components of force on the shaft.

SOLUTION

Support Reactions:

$$
\begin{gathered}
\Sigma M_{z}=0 ; \quad 160(0.4)+400(0.7)-A_{y}(1.4)=0 \\
A_{y}=245.71 \mathrm{~N}
\end{gathered}
$$

$\Sigma F_{y}=0 ; \quad-245.71-B_{y}+400+160=0$

$$
B_{y}=314.29 \mathrm{~N}
$$

$\Sigma M_{y}=0 ; \quad 800(1.1)-A_{z}(1.4)=0 \quad A_{z}=628.57 \mathrm{~N}$
$\Sigma F_{z}=0$
$B_{z}+628.57-800=0$
$B_{z}=171.43 \mathrm{~N}$
Equations of Equilibrium: For point D
$\Sigma F_{x}=0 ;$

$$
\left(N_{D}\right)_{x}=0
$$

$\Sigma F_{y}=0 ;$
$\left(V_{D}\right)_{y}-314.29+160=0$
$\left(V_{D}\right)_{y}=154 \mathrm{~N}$
$\Sigma F_{z}=0 ;$
$171.43+\left(V_{D}\right)_{z}=0$
$\left(V_{D}\right)_{z}=-171 \mathrm{~N}$
$\Sigma M_{x}=0 ;$
$\left(T_{D}\right)_{x}=0$
$\Sigma M_{y}=0 ;$
$171.43(0.55)+\left(M_{D}\right)_{y}=0_{i}$
$\left(M_{D}\right)_{y}=-94.3 \mathrm{~N} \cdot \mathrm{~m}$
$\Sigma M_{z}=0 ; \quad 314.29(0.55)-160(0.15)+\left(M_{D}\right)_{z}=0$

$$
\left(M_{D}\right)_{z}=-149 \mathrm{~N} \cdot \mathrm{~m}
$$

Ans.

Ans:
$\left(N_{D}\right)_{x}=0$,
$\left(V_{D}\right)_{y}=154 \mathrm{~N}$,
$\left(V_{D}\right)_{z}=-171 \mathrm{~N}$,
$\left(T_{D}\right)_{x}=0$,
$\left(M_{D}\right)_{y}=-94.3 \mathrm{~N} \cdot \mathrm{~m}$,
$\left(M_{D}\right)_{z}=-149 \mathrm{~N} \cdot \mathrm{~m}$

1-18.

The shaft is supported at its ends by two bearings A and B and is subjected to the forces applied to the pulleys fixed to the shaft. Determine the resultant internal loadings acting on the cross section at point C. The $400-\mathrm{N}$ forces act in the $-z$ direction and the $200-\mathrm{N}$ and $80-\mathrm{N}$ forces act in the $+y$ direction. The journal bearings at A and B exert only y and z components of force on the shaft.

SOLUTION

Support Reactions:

$$
\begin{gathered}
\Sigma M_{z}=0 ; \quad 160(0.4)+400(0.7)-A_{y}(1.4)=0 \\
A_{y}=245.71 \mathrm{~N}
\end{gathered}
$$

$$
\Sigma F_{y}=0 ; \quad-245.71-B_{y}+400+160=0
$$

$$
B_{y}=314.29 \mathrm{~N}
$$

$\Sigma M_{y}=0 ; \quad 800(1.1)-A_{z}(1.4)=0 \quad A_{z}=628.57 \mathrm{~N}$
$\Sigma F_{z}=0$
$B_{z}+628.57-800=0$ $B_{z}=171.43 \mathrm{~N}$

Equations of Equilibrium: For point C
$\Sigma F_{x}=0 ;$

$$
\left(N_{C}\right)_{x}=0
$$

$\Sigma F_{y}=0 ;$
$-245.71+\left(V_{C}\right)_{y}=0$

$$
\left(V_{C}\right)_{y}=-246 \mathrm{~N}
$$

$\Sigma F_{z}=0 ; \quad 628.57-800+\left(V_{C}\right)_{z}=0$

$$
\left(V_{C}\right)_{z}=-171 \mathrm{~N}
$$

$\Sigma M_{x}=0 ;$
$\left(T_{C}\right)_{x}=0$
$\Sigma M_{y}=0 ;$
$\left(M_{C}\right)_{y}-628.57(0.5)+800(0.2)=0$
$\left(M_{C}\right)_{y}=-154 \mathrm{~N} \cdot \mathrm{~m}$
$\Sigma M_{z}=0 ; \quad\left(M_{C}\right)_{z}-245.71(0.5)=0$

$$
\left(M_{C}\right)_{z}=-123 \mathrm{~N} \cdot \mathrm{~m}
$$

Ans.

$$
\begin{aligned}
& \text { Ans: } \\
& \left(N_{C}\right)_{x}=0, \\
& \left(V_{C}\right)_{y}=-246 \mathrm{~N}, \\
& \left(V_{C}\right)_{z}=-171 \mathrm{~N}, \\
& \left(T_{C}\right)_{x}=0, \\
& \left(M_{C}\right)_{y}=-154 \mathrm{~N} \cdot \mathrm{~m}, \\
& \left(M_{C}\right)_{z}=-123 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

1-19.

The hand crank that is used in a press has the dimensions shown. Determine the resultant internal loadings acting on the cross section at point A if a vertical force of 50 lb is applied to the handle as shown. Assume the crank is fixed to the shaft at B.

SOLUTION

$$
\begin{array}{lll}
\Sigma F_{x}=0 ; & \left(V_{A}\right)_{x}=0 \\
\Sigma F_{y}=0 ; & \left(N_{A}\right)_{y}+50 \sin 30^{\circ}=0 ; & \left(N_{A}\right)_{y}=-25 \mathrm{lb} \\
\Sigma F_{z}=0 ; & \left(V_{A}\right)_{z}-50 \cos 30^{\circ}=0 ; & \left(V_{A}\right)_{z}=43.3 \mathrm{lb} \\
\Sigma M_{x}=0 ; & \left(M_{A}\right)_{x}-50 \cos 30^{\circ}(7)=0 ; & \left(M_{A}\right)_{x}=303 \mathrm{lb} \cdot \mathrm{in} . \\
\Sigma M_{y}=0 ; & \left(T_{A}\right)_{y}+50 \cos 30^{\circ}(3)=0 ; & \left(T_{A}\right)_{y}=-130 \mathrm{lb} \cdot \mathrm{in} . \\
\Sigma M_{z}=0 ; & \left(M_{A}\right)_{z}+50 \sin 30^{\circ}(3)=0 ; & \left(M_{A}\right)_{z}=-75 \mathrm{lb} \cdot \mathrm{in} .
\end{array}
$$

Ans.
Ans.

> Ans:
> $\left(V_{A}\right)_{x}=0$,
> $\left(N_{A}\right)_{y}=-25 \mathrm{lb}$,
> $\left(V_{A}\right)_{z}=43.3 \mathrm{lb}$,
> $\left(M_{A}\right)_{x}=303 \mathrm{lb} \cdot \mathrm{in} .$,
> $\left(T_{A}\right)_{y}=-130 \mathrm{lb} \cdot \mathrm{in} .$,
> $\left(M_{A}\right)_{z}=-75 \mathrm{lb} \cdot \mathrm{in}$.

*1-20.

Determine the resultant internal loadings acting on the cross section at point C in the beam. The load D has a mass of 300 kg and is being hoisted by the motor M with constant velocity.

SOLUTION

\[

\]

Ans.
Ans.

Ans.

[^0]
1-21.

Determine the resultant internal loadings acting on the cross section at point E. The load D has a mass of 300 kg and is being hoisted by the motor M with constant velocity.

SOLUTION

$$
\begin{array}{ll}
\xrightarrow{+} \Sigma F_{x}=0 ; & N_{E}+2943=0 \\
& N_{E}=-2.94 \mathrm{kN} \\
+\uparrow \Sigma F_{y}=0 ; & -2943-V_{E}=0 \\
& V_{E}=-2.94 \mathrm{kN} \\
C+\Sigma M_{E}=0 ; & M_{E}+2943(1)=0 \\
& M_{E}=-2.94 \mathrm{kN} \cdot \mathrm{~m}
\end{array}
$$

Ans.

Ans.

Ans:

$N_{E}=-2.94 \mathrm{kN}$, $V_{E}=-2.94 \mathrm{kN}$,
$M_{E}=-2.94 \mathrm{kN} \cdot \mathrm{m}$

1-22.

The metal stud punch is subjected to a force of 120 N on the handle. Determine the magnitude of the reactive force at the $\operatorname{pin} A$ and in the short link $B C$. Also, determine the resultant internal loadings acting on the cross section at point D.

SOLUTION

Member:

$$
\begin{array}{ll}
C+\Sigma M_{A}=0 ; & F_{B C} \cos 30^{\circ}(50)-120(500)=0 \\
& F_{B C}=1385.6 \mathrm{~N}=1.39 \mathrm{kN} \\
+\uparrow \Sigma F_{y}=0 ; & A_{y}-1385.6-120 \cos 30^{\circ}=0 \\
& A_{y}=1489.56 \mathrm{~N} \\
\pm \Sigma F_{x}=0 ; & A_{x}-120 \sin 30^{\circ}=0 ; \quad A_{x}=60 \mathrm{~N} \\
F_{A}=\sqrt{1489.56^{2}+60^{2}} & \\
=1491 \mathrm{~N}=1.49 \mathrm{kN} &
\end{array}
$$

Segment:

$$
\begin{array}{ll}
\Sigma^{+} \Sigma F_{x^{\prime}}=0 ; & N_{D}-120=0 \\
& N_{D}=120 \mathrm{~N} \\
+\nearrow \Sigma F_{y^{\prime}}=0 ; & V_{D}=0 \\
\varsigma+\Sigma M_{D}=0 ; & M_{D}-120(0.3) \sim 0 \\
& M_{D}=36.0 \mathrm{~N} \cdot \mathrm{~m}
\end{array}
$$

Ans.

Ans.

Ans.
Ans.

Ans.

Ans:
$F_{B C}=1.39 \mathrm{kN}, F_{A}=1.49 \mathrm{kN}, N_{D}=120 \mathrm{~N}$, $V_{D}=0, M_{D}=36.0 \mathrm{~N} \cdot \mathrm{~m}$

1-23.

Determine the resultant internal loadings acting on the cross section at point E of the handle arm, and on the cross section of the short link $B C$.

SOLUTION

Member:
$\zeta+\Sigma M_{A}=0 ; \quad F_{B C} \cos 30^{\circ}(50)-120(500)=0$
$F_{B C}=1385.6 \mathrm{~N}=1.3856 \mathrm{kN}$

Segment:

$+\Sigma F_{x^{\prime}}=0 ;$
$N_{E}=0$
$\Sigma+\Sigma F_{y^{\prime}}=0 ;$
$V_{E}-120=0 ; \quad V_{E}=120 \mathrm{~N}$
$\varsigma+\Sigma M_{E}=0 ; \quad M_{E}-120(0.4)=0 ; \quad M_{E}=48.0 \mathrm{~N} \cdot \mathrm{~m}$
Short link:
$\pm \Sigma F_{x}=0 ; \quad V=0$
$+\uparrow \Sigma F_{y}=0 ;$
$1.3856-N=0 ; \quad N=1.39 \mathrm{kN}$
$\varsigma+\Sigma M_{H}=0 ; \quad M=0$
Ans.
Ans.
Ans.

Ans.
Ans.
Ans.

Ans:
$N_{E}=0, V_{E}=120 \mathrm{~N}, M_{E}=48.0 \mathrm{~N} \cdot \mathrm{~m}$, Short link: $V=0, N=1.39 \mathrm{kN}, M=0$

*1-24.

Determine the resultant internal loadings acting on the cross section at point C. The cooling unit has a total weight of 52 kip and a center of gravity at G.

SOLUTION

From FBD (a)

$$
\varsigma+\Sigma M_{A}=0 ; \quad T_{B}(6)-52(3)=0 ; \quad T_{B}=26 \mathrm{kip}
$$

From FBD (b)

$$
\varsigma+\Sigma M_{D}=0 ; \quad T_{E} \sin 30^{\circ}(6)-26(6)=0 ; \quad T_{E}=52 \mathrm{kip}
$$

From FBD (c)

$$
\begin{array}{lll}
+\Sigma F_{x}=0 ; & -N_{C}-52 \cos 30^{\circ}=0 ; & N_{C}=-45.0 \mathrm{kip} \\
+\uparrow \Sigma F_{y}=0 ; & V_{C}+52 \sin 30^{\circ}-26=0 ; & V_{C}=0 \\
\varsigma+\Sigma M_{C}=0 ; & 52 \cos 30^{\circ}(0.2)+52 \sin 30^{\circ}(3)-26(3)-M_{C} \mathcal{}-0 \\
& M_{C}=9.00 \mathrm{kip} \cdot \mathrm{ft}
\end{array}
$$

Ans.

Ans.

Ans.

> Ans:
> $N_{C}=-45.0 \mathrm{kip}$,
> $V_{C}=0$,
> $M_{C}=9.00 \mathrm{kip} \cdot \mathrm{ft}$

1-25.

Determine the resultant internal loadings acting on the cross section at points B and C of the curved member.

SOLUTION

From FBD (a)

$$
\begin{array}{ll}
\nearrow+\Sigma F_{x^{\prime}}=0 ; & 400 \cos 30^{\circ}+300 \cos 60^{\circ}-V_{B}=0 \\
& V_{B}=496 \mathrm{lb} \\
\nwarrow+\Sigma F_{y^{\prime}}=0 ; & N_{B}+400 \sin 30^{\circ}-300 \sin 60^{\circ}=0 \\
& N_{B}=59.80=59.8 \mathrm{lb} \\
\varsigma+\Sigma M_{O}=0 ; & 300(2)-59.80(2)-M_{B}=0 \\
& M_{B}=480 \mathrm{lb} \cdot \mathrm{ft}
\end{array}
$$

From FBD (b)

$$
\begin{array}{ll}
\nearrow+\Sigma F_{x^{\prime}}=0 ; & 400 \cos 45^{\circ}+300 \cos 45^{\circ}-N_{C}=0 \\
& N_{C}=495 \mathrm{lb} \\
\nwarrow+\Sigma F_{y^{\prime}}=0 ; & -V_{C}+400 \sin 45^{\circ}-300 \sin 45^{\circ}=0 \\
& V_{C}=70.7 \mathrm{lb} \\
\varsigma+\Sigma M_{O}=0 ; & 300(2)+495(2)-M_{C}=0 \\
& M_{C}=1590 \mathrm{lb} \cdot \mathrm{ft}=1.59 \mathrm{kip} \cdot \mathrm{ft}
\end{array}
$$

Ans.

Ans.

(a)

Ans.
Ans.
Ans.
Ans.

[^1]
1-26.

Determine the resultant internal loadings acting on the cross section of the frame at points F and G. The contact at E is smooth.

SOLUTION

Member DEF:

$$
\begin{gathered}
\varsigma+\Sigma M_{D}=0 ; \quad N_{E}(5)-80(9)=0 \\
N_{E}=144 \mathrm{lb}
\end{gathered}
$$

Member BCE:

$$
\begin{aligned}
\varsigma+\Sigma M_{B}=0 ; & F_{A C}\left(\frac{4}{5}\right)(3)-144 \sin 30^{\circ}(6)=0 \\
& F_{A C}=180 \mathrm{lb} \\
\xrightarrow[\rightarrow]{ } \Sigma F_{x}=0 ; & B_{x}+180\left(\frac{3}{5}\right)-144 \cos 30^{\circ}=0 \\
& B_{x}=16.708 \mathrm{lb} \\
+\uparrow \Sigma F_{y}=0 ; & -B_{y}+180\left(\frac{4}{5}\right)-144 \sin 30^{\circ}=0 \\
& B_{y}=72.0 \mathrm{lb}
\end{aligned}
$$

For point F :
$+\Sigma \Sigma F_{x}=0 ; \quad N_{F}=0$
$+\nearrow \Sigma F_{y}=0 ; \quad V_{F}-80=0 ; \quad V_{F}=80 \mathrm{db}$
$\zeta+\Sigma M_{F}=0 ; \quad M_{F}-80(2)=0 ; \quad M_{F}=160 \mathrm{lb} \cdot \mathrm{ft}$
For point G :

$$
\begin{array}{llc}
\xrightarrow{+} \Sigma F_{x}=0 ; & 16.708-N_{G}=0 ; & N_{G}=16.7 \mathrm{lb} \\
+\uparrow \Sigma F_{y}=0 ; & V_{G}-72.0=0 ; & V_{G}=72.0 \mathrm{lb} \\
C+\Sigma M_{G}=0 ; & 72(1.5)-M_{G}=0 ; & M_{G}=108 \mathrm{lb} \cdot \mathrm{ft}
\end{array}
$$

Ans.
Ans.
Ans.

Ans.
Ans.
Ans.

1-27.

The pipe has a mass of $12 \mathrm{~kg} / \mathrm{m}$. If it is fixed to the wall at A, determine the resultant internal loadings acting on the cross section at B.

SOLUTION

Internal Loadings: Referring to the FBD of the right segment of the pipe assembly sectioned through B, Fig. a,

$$
\begin{array}{lll}
\Sigma F_{x}=0 ; & \left(V_{B}\right)_{x}+300=0 & \left(V_{B}\right)_{x}=-300 \mathrm{~N} \\
\Sigma F_{y}=0 ; & \left(N_{B}\right)_{y}+400+500\left(\frac{4}{5}\right)=0 & \left(N_{B}\right)_{y}=-800 \mathrm{~N} \\
\Sigma F_{z}=0 ; & \left(V_{B}\right)_{z}-2[12(2)(9.81)]-500\left(\frac{3}{5}\right)=0
\end{array}
$$

$$
\left(V_{B}\right)_{z}=770.88 \mathrm{~N}=771 \mathrm{~N}
$$

$\Sigma M_{x}=0 ; \quad\left(M_{B}\right)_{x}-12(2)(9.81)(1)-12(2)(9.81)(2)-500\left(\frac{3}{5}\right)(2)$

$$
-400(2) \neq 0
$$

$$
\left(M_{B}\right)_{x}=2106.32 \mathrm{~N} \cdot \mathrm{~m}=2.11 \mathrm{kN} \cdot \mathrm{~m}
$$

$\Sigma M_{y}=0 ; \quad\left(T_{B}\right)_{y}+300(2)=0$
$\left(T_{B}\right)_{y}=-600 \mathrm{~N} \cdot \mathrm{~m}$
$\Sigma M_{z}=0 ; \quad\left(M_{B}\right)_{z}-300(2)=0$
$\left(M_{B}\right)_{z}=600 \mathrm{~N} \cdot \mathrm{~m}$

Ans.

Ans.

Ans.

Ans.
Ans.
Ans.

The negative signs indicates that $\left(\mathbf{V}_{B}\right)_{x},\left(\mathbf{N}_{B}\right)_{y}$, and $\left.\left(\mathbf{T}_{B}\right)_{y}\right)^{\text {act }}$ in the sense opposite to those shown in the FBD.

(a)

> Ans:
> $\left(V_{B}\right)_{x}=-300 \mathrm{~N}$,
> $\left(N_{B}\right)_{y}=-800 \mathrm{~N}$,
> $\left(V_{B}\right)_{z}=771 \mathrm{~N}$,
> $\left(M_{B}\right)_{x}=2.11 \mathrm{kN} \cdot \mathrm{m}$,
> $\left(T_{B}\right)_{y}=-600 \mathrm{~N} \cdot \mathrm{~m}$,
> $\left(M_{B}\right)_{z}=600 \mathrm{~N} \cdot \mathrm{~m}$

*1-28.

The brace and drill bit is used to drill a hole at O. If the drill bit jams when the brace is subjected to the forces shown, determine the resultant internal loadings acting on the cross section of the drill bit at A.

SOLUTION

Internal Loading: Referring to the free-body diagram of the section of the drill and brace shown in Fig. a,
$\Sigma F_{x}=0 ; \quad\left(V_{A}\right)_{x}-30=0 \quad\left(V_{A}\right)_{x}=30 \mathrm{lb} \quad$ Ans
$\Sigma F_{y}=0 ; \quad\left(N_{A}\right)_{y}-50=0$
$\left(N_{A}\right)_{y}=50 \mathrm{lb}$
Ans.
Ans.
Ans.
$\Sigma M_{y}=0 ; \quad\left(T_{A}\right)_{y}-30(0.75)=0 \quad\left(T_{A}\right)_{y}=22.5 \mathrm{lb} \cdot \mathrm{ft}$
$\Sigma M_{z}=0 ; \quad\left(M_{A}\right)_{z}+30(1.25)=0 \quad\left(M_{A}\right)_{z}=-37.5 \mathrm{lb} \cdot \mathrm{ft}$
Ans.
Ans.
The negative sign indicates that $\left(\mathrm{M}_{A}\right)_{z}$ acts in the opposite sense to that shown on the free-body diagram.

Ans:
$\left(V_{A}\right)_{x}=30 \mathrm{lb}$,
$\left(N_{A}\right)_{y}=50 \mathrm{lb}$,
$\left(V_{A}\right)_{z}=10 \mathrm{lb}$,
$\left(M_{A}\right)_{x}=22.5 \mathrm{lb} \cdot \mathrm{ft}$,
$\left(T_{A}\right)_{y}=22.5 \mathrm{lb} \cdot \mathrm{ft}$,
$\left(M_{A}\right)_{z}=-37.5 \mathrm{lb} \cdot \mathrm{ft}$

1-29.

The curved $\operatorname{rod} A D$ of radius r has a weight per length of w. If it lies in the horizontal plane, determine the resultant internal loadings acting on the cross section at point B. Hint: The distance from the centroid C of segment $A B$ to point O is $C O=0.9745 r$.

SOLUTION

$\Sigma F_{z}=0 ;$	$V_{B}-\frac{\pi}{4} r w=0 ;$	$V_{B}=0.785 w r$
$\Sigma F_{x}=0 ;$	$N_{B}=0$	
$\Sigma M_{x}=0 ;$	$T_{B}-\frac{\pi}{4} r w(0.09968 r)=0 ;$	$T_{B}=0.0783 w r^{2}$
$\Sigma M_{y}=0 ;$	$M_{B}+\frac{\pi}{4} r w(0.3729 r)=0 ;$	$M_{B}=-0.293 w r^{2}$

Ans.

Ans.
Ans.

Ans.

Ans:
$V_{B}=0.785 w r$,
$N_{B}=0$,
$T_{B}=0.0783 w r^{2}$,
$M_{B}=-0.293 w r^{2}$

1-30.

A differential element taken from a curved bar is shown in the figure. Show that $d N / d \theta=V, \quad d V / d \theta=-N$, $d M / d \theta=-T$, and $d T / d \theta=M$.

SOLUTION

$\Sigma F_{x}=0 ;$
$N \cos \frac{d \theta}{2}+V \sin \frac{d \theta}{2}-(N+d N) \cos \frac{d \theta}{2}+(V+d V) \sin \frac{d \theta}{2}=0$
(1)
$\Sigma F_{y}=0 ;$
$N \sin \frac{d \theta}{2}-V \cos \frac{d \theta}{2}+(N+d N) \sin \frac{d \theta}{2}+(V+d V) \cos \frac{d \theta}{2}=0$
$\Sigma M_{x}=0 ;$
$T \cos \frac{d \theta}{2}+M \sin \frac{d \theta}{2}-(T+d T) \cos \frac{d \theta}{2}+(M+d M) \sin \frac{d \theta}{2}=0$
$\Sigma M_{y}=0 ;$
$T \sin \frac{d \theta}{2}-M \cos \frac{d \theta}{2}+(T+d T) \sin \frac{d \theta}{2}+(M+d M) \cos \frac{d \theta}{2}=\theta^{c}$
(4)

Since $\frac{d \theta}{2}$ is can add, then $\sin \frac{d \theta}{2}=\frac{d \theta}{2}, \cos \frac{d \theta}{2}=1$

Eq. (1) becomes $V d \theta-d N+\frac{d V d \theta}{2}=0$
Neglecting the second order term, $V d \theta-d N=0$
$\frac{d N}{d \theta}=V$
QED
Eq. (2) becomes $N d \theta+d V+\frac{d N d \theta}{2}=0$
Neglecting the second order term, $N d \theta+d V=0$
$\frac{d V}{d \theta}=-N$
QED
Eq. (3) becomes $M d \theta-d T+\frac{d M d \theta}{2}=0$
Neglecting the second order term, $M d \theta-d T=0$
$\frac{d T}{d \theta}=M$
QED
Eq. (4) becomes $T d \theta+d M+\frac{d T d \theta}{2}=0$
Neglecting the second order term, $T d \theta+d M=0$
$\frac{d M}{d \theta}=-T$
QED

1-31.

The supporting wheel on a scaffold is held in place on the leg using a 4 -mm-diameter pin. If the wheel is subjected to a normal force of 3 kN , determine the average shear stress in the pin. Assume the pin only supports the vertical 3-kN load.

SOLUTION

$$
\begin{aligned}
& +\uparrow \Sigma F_{y}=0 ; \quad 3 \mathrm{kN} \cdot 2 V=0 ; \quad V=1.5 \mathrm{kN} \\
& \tau_{\mathrm{avg}}=\frac{V}{A}=\frac{1.5\left(10^{3}\right)}{\frac{\pi}{4}(0.004)^{2}}=119 \mathrm{MPa}
\end{aligned}
$$

Ans.

Ans:
$\tau_{\text {avg }}=119 \mathrm{MPa}$

*1-32.

Determine the largest intensity w of the uniform loading that can be applied to the frame without causing either the average normal stress or the average shear stress at section $b-b$ to exceed $\sigma=15 \mathrm{MPa}$ and $\tau=16 \mathrm{MPa}$, respectively. Member $C B$ has a square cross section of 30 mm on each side.

SOLUTION

Support Reactions: FBD(a)
$\varsigma+\Sigma M_{A}=0 ; \quad \frac{4}{5} F_{B C}(3)-3 w(1.5)=0 \quad F_{B C}=1.875 w$

Equations of Equilibrium: For section $b-b, \operatorname{FBD}(\mathbf{b})$
$\xrightarrow{+} \Sigma F_{x}=0 ; \quad \frac{4}{5}(1.875 w)-V_{b-b}=0 \quad V_{b-b}=1.50 w$
$+\uparrow \Sigma F_{y}=0 ; \quad \frac{3}{5}(1.875 w)-N_{b-b}=0 \quad N_{b-b}=1.125 w$
Average Normal Stress and Shear Stress: The cross-sectional area of section $b-b$, $A^{\prime}=\frac{5 A}{3}$; where $A=(0.03)(0.03)=0.90\left(10^{-3}\right) \mathrm{m}^{2}$.
Then $A^{\prime}=\frac{5}{3}(0.90)\left(10^{-3}\right)=1.50\left(10^{-3}\right) \mathrm{m}^{2}$.

Assume failure due to normal stress.

$$
\begin{aligned}
\left(\sigma_{b-b}\right)_{\text {Allow }} & =\frac{N_{b-b}}{A^{\prime}} ; \quad 15\left(10^{6}\right) \\
w & =20000 \mathrm{~N} / \mathrm{m}=20.0 \mathrm{kN} / \mathrm{m}
\end{aligned}
$$

Assume failure due to shear stress.

$$
\begin{gathered}
\left(\tau_{b-b}\right)_{\text {Allow }}=\frac{V_{b-b}}{A^{\prime}} ; \quad 16\left(10^{6}\right)=\frac{1.50 w}{1.50\left(10^{-3}\right)} \\
w=16000 \mathrm{~N} / \mathrm{m}=16.0 \mathrm{kN} / \mathrm{m}(\text { Controls }!)
\end{gathered}
$$

Ans.

Ans:
$w=16.0 \mathrm{kN} / \mathrm{m}$ (Controls !)

1-33.

The bar has a cross-sectional area A and is subjected to the axial load P. Determine the average normal and average shear stresses acting over the shaded section, which is oriented at θ from the horizontal. Plot the variation of these stresses as a function of $\theta\left(0 \leq \theta \leq 90^{\circ}\right)$.

SOLUTION

Equations of Equilibrium:

$\searrow+\Sigma F_{x}=0 ; \quad V-P \cos \theta=0 \quad V=P \cos \theta$
$\nearrow+\Sigma F_{y}=0 ; \quad N-P \sin \theta=0 \quad N=P \sin \theta$
Average Normal Stress and Shear Stress: Area at θ plane, $A^{\prime}=\frac{A}{\sin \theta}$.

$$
\begin{aligned}
\sigma_{\mathrm{avg}}=\frac{N}{A^{\prime}} & =\frac{P \sin \theta}{\frac{A}{\sin \theta}}=\frac{P}{A} \sin ^{2} \theta \\
\tau_{\mathrm{avg}}=\frac{V}{A^{\prime}} & =\frac{P \cos \theta}{\frac{A}{\sin \theta}} \\
& =\frac{P}{A} \sin \theta \cos \theta=\frac{P}{2 A} \sin 2 \theta
\end{aligned}
$$

Ans.

Ans.

Ans:
$\sigma_{\text {avg }}=\frac{P}{A} \sin ^{2} \theta, \tau_{\text {avg }}=\frac{P}{2 A} \sin 2 \theta$

1-34.

The small block has a thickness of 0.5 in . If the stress distribution at the support developed by the load varies as shown, determine the force \mathbf{F} applied to the block, and the distance d to where it is applied.

SOLUTION

$F=\int \sigma d A=$ volume under load diagram
$F=20(1.5)(0.5)+\frac{1}{2}(20)(1.5)(0.5)=22.5 \mathrm{kip}$
$F d=\int x(\sigma d A)$
$(22.5) d=(0.75)(20)(1.5)(0.5)+\frac{2}{3}(1.5)\left(\frac{1}{2}\right)(20)(1.5)(0.5)$
$(22.5) d=18.75$
$d=0.833$ in.

Ans.

Ans.

Ans:
$F=22.5 \mathrm{kip}$,
$d=0.833$ in.

1-35.

If the material fails when the average normal stress reaches 120 psi , determine the largest centrally applied vertical load \mathbf{P} the block can support.

SOLUTION

Average Normal Stress: The cross-sectional area of the block is

$$
A=14(6)-2[4(1)]=76 \mathrm{in}^{2}
$$

Thus,

$$
\begin{gathered}
\sigma_{\text {allow }}=\frac{N_{\text {allow }}}{A} ; \quad 120=\frac{P_{\text {allow }}}{76} \\
P_{\text {allow }}=9120 \mathrm{lb}=9.12 \mathrm{kip}
\end{gathered}
$$

$$
x_{2}^{2}
$$

Ans.

Ans:
$P_{\text {allow }}=9.12 \mathrm{kip}$

*1-36.

If the block is subjected to a centrally applied force of $P=6$ kip, determine the average normal stress in the material. Show the stress acting on a differential volume element of the material

SOLUTION

Average Normal Stress: The cross-sectional area of the block is

$$
A=14(6)-2[4(1)]=76 \mathrm{in}^{2}
$$

Thus,

$$
\sigma=\frac{N}{A}=\frac{6\left(10^{3}\right)}{76}=78.947 \mathrm{psi}=78.9 \mathrm{psi}
$$

Ans.

The average normal stress acting on the differential volume element is shown in Fig. a.

Ans:
$\sigma=78.9 \mathrm{psi}$

1-37.

The plate has a width of 0.5 m . If the stress distribution at the support varies as shown, determine the force \mathbf{P} applied to the plate and the distance d to where it is applied.

SOLUTION

The resultant force $d F$ of the bearing pressure acting on the plate of area $d A=b$ $d x=0.5 d x$, Fig. a,

$$
\begin{aligned}
& d F=\sigma_{b} d A=\left(15 x^{\frac{1}{2}}\right)\left(10^{6}\right)(0.5 d x)=7.5\left(10^{6}\right) x^{\frac{1}{2}} d x \\
& +\uparrow \Sigma F_{y}=0 ; \quad \int d F-P=0 \\
& \quad \int_{0}^{4 \mathrm{~m}} 7.5\left(10^{6}\right) x^{\frac{1}{2}} d x-P=0 \\
& P=40\left(10^{6}\right) \mathrm{N}=40 \mathrm{MN}
\end{aligned}
$$

Ans.
Equilibrium requires
$\varsigma+\Sigma M_{O}=0 ; \quad \int x d F-P d=0$

$$
\begin{gathered}
\int_{0}^{4 \mathrm{~m}} x\left[7.5\left(10^{6}\right) x^{\frac{1}{2}} d x\right]-40\left(10^{6}\right) d=0 \\
d=2.40 \mathrm{~m}
\end{gathered}
$$

Ans.
x

Ans:
$P=40 \mathrm{MN}, d=2.40 \mathrm{~m}$

1-38.

The board is subjected to a tensile force of 200 lb . Determine the average normal and average shear stress in the wood fibers, which are oriented along plane $a-a$ at 20° with the axis of the board.

SOLUTION

Internal Loadings: Referring to the FBD of the lower segment of the board sectioned through plane $a-a$, Fig. a,
$\begin{array}{lll}\Sigma F_{x}=0 ; & N-200 \sin 20^{\circ}=0 & N=68.40 \mathrm{lb} \\ \Sigma F_{y}=0 ; & 200 \cos 20^{\circ}-V=0 & V=187.94 \mathrm{lb}\end{array}$
Average Normal and Shear Stress: The area of plane $a-a$ is

$$
A=2\left(\frac{4}{\sin 20^{\circ}}\right)=23.39 \mathrm{in}^{2}
$$

Then,

$$
\begin{aligned}
& \sigma=\frac{N}{A}=\frac{68.40}{23.39}=2.92 \mathrm{psi} \\
& \tau=\frac{V}{A}=\frac{187.94}{23.39}=8.03 \mathrm{psi}
\end{aligned}
$$

Ans.

Ans.

Ans:

$\sigma=2.92 \mathrm{psi}$,
$\tau=8.03 \mathrm{psi}$

1-39.

The boom has a uniform weight of 600 lb and is hoisted into position using the cable $B C$. If the cable has a diameter of 0.5 in., plot the average normal stress in the cable as a function of the boom position θ for $0^{\circ} \leq \theta \leq 90^{\circ}$.

SOLUTION

Support Reactions:

$\varsigma+\Sigma M_{A}=0 ; \quad F_{B C} \sin \left(45^{\circ}+\frac{\theta}{2}\right)(3)$

$$
-600(1.5 \cos \theta)=0
$$

$$
F_{B C}=\frac{300 \cos \theta}{\sin \left(45^{\circ}+\frac{\theta}{2}\right)}
$$

Average Normal Stress:

$$
\begin{aligned}
\sigma_{B C}=\frac{F_{B C}}{A_{B C}} & =\frac{\frac{300 \cos \theta}{\sin \left(45^{\circ}+\frac{\theta}{2}\right)}}{\frac{\pi}{4}\left(0.5^{2}\right)} \\
& =\left\{\frac{1.528 \cos \theta}{\sin \left(45^{\circ}+\frac{\theta}{2}\right)}\right\} \mathrm{ksi}
\end{aligned}
$$

Ans.

Ans:
$\sigma_{B C}=\left\{\frac{1.528 \cos \theta}{\sin \left(45^{\circ}+\frac{\theta}{2}\right)}\right\} \mathrm{ksi}$

*1-40.

Determine the average normal stress in each of the $20-\mathrm{mm}$-diameter bars of the truss. Set $P=40 \mathrm{kN}$.

SOLUTION

Internal Loadings: The force developed in each member of the truss can be determined
 by using the method of joints. First, consider the equilibrium of joint C, Fig. a,
$\xrightarrow{+} \Sigma F_{x}=0 ;$
$40-F_{B C}\left(\frac{4}{5}\right)=0$
$F_{B C}=50 \mathrm{kN}(\mathrm{C})$
$+\uparrow \Sigma F_{y}=0 ;$
$50\left(\frac{3}{5}\right)-F_{A C}=0$
$F_{A C}=30 \mathrm{kN}(\mathrm{T})$

Subsequently, the equilibrium of joint B, Fig. b, is considered
$\xrightarrow{+} \Sigma F_{x}=0 ;$
$50\left(\frac{4}{5}\right)-F_{A B}=0$

$$
F_{A B}=40 \mathrm{kN}(\mathrm{~T})
$$

Average Normal Stress: The cross-sectional area of each of the bars is
$A=\frac{\pi}{4}\left(0.02^{2}\right)=0.3142\left(10^{-3}\right) \mathrm{m}^{2}$. We obtain,

$$
\begin{aligned}
& \left(\sigma_{\text {avg }}\right)_{B C}=\frac{F_{B C}}{A}=\frac{50\left(10^{3}\right)}{0.3142\left(10^{-3}\right)}=159 \mathrm{MPa} \\
& \left(\sigma_{\text {avg }}\right)_{A C}=\frac{F_{A C}}{A}=\frac{30\left(10^{3}\right)}{0.3142\left(10^{-3}\right)}=95.5 \mathrm{MPa} \\
& \left(\sigma_{\text {avg }}\right)_{A B}=\frac{F_{A B}}{A}=\frac{40\left(10^{3}\right)}{0.3142\left(10^{-3}\right)}=127 \mathrm{MPa}
\end{aligned}
$$

Ans.

(a)

Ans.

Ans.

(b)

Ans:

$\left(\sigma_{\text {avg }}\right)_{B C}=159 \mathrm{MPa}$,
$\left(\sigma_{\text {avg }}\right)_{A C}=95.5 \mathrm{MPa}$,
$\left(\sigma_{\mathrm{avg}}\right)_{A B}=127 \mathrm{MPa}$

1-41.

If the average normal stress in each of the 20-mm-diameter bars is not allowed to exceed 150 MPa , determine the maximum force \mathbf{P} that can be applied to joint C.

SOLUTION

Internal Loadings: The force developed in each member of the truss can be determined by using the method of joints. First, consider the equilibrium of joint C, Fig. a.

$$
\begin{array}{lll}
+\Sigma \Sigma F_{x}=0 ; & P-F_{B C}\left(\frac{4}{5}\right)=0 & F_{B C}=1.25 P(\mathrm{C}) \\
+\uparrow \Sigma F_{y}=0 ; & 1.25 P\left(\frac{3}{5}\right)-F_{A C}=0 & F_{A C}=0.75 P(\mathrm{~T})
\end{array}
$$

Subsequently, the equilibrium of joint B, Fig. b, is considered.

$$
\xrightarrow{+} \Sigma F_{x}=0 ; \quad 1.25 P\left(\frac{4}{5}\right)-F_{A B}=0 \quad F_{A B}=P(\hat{\mathrm{~T}})
$$

Average Normal Stress: Since the cross-sectional area and the allowable normal stress of each bar are the same, member $B C$, which is subjected to the maximum normal force, is the critical member. The cross-sectional area of each of the bars is $A=\frac{\pi}{4}\left(0.02^{2}\right)=0.3142\left(10^{-3}\right) \mathrm{m}^{2}$. We have,

$$
\begin{array}{ll}
\left(\sigma_{\text {avg }}\right)_{\text {allow }}=\frac{F_{B C}}{A} ; & 150\left(10^{6}\right)=\frac{1.25 P}{0.3142\left(10^{-3}\right)} \\
& P=37699 \mathrm{~N}=37.7 \mathrm{kN}
\end{array}
$$

Ans.

(b)

Ans:
$P=37.7 \mathrm{kN}$

1-42.

Determine the maximum average shear stress in pin A of the truss. A horizontal force of $P=40 \mathrm{kN}$ is applied to joint C. Each pin has a diameter of 25 mm and is subjected to double shear.

SOLUTION

 reactions at A and B. Referring to the free-body diagram of the entire truss, Fig. a,

$$
\begin{array}{lll}
\Sigma M_{A}=0 ; & B_{y}(2)-40(1.5)=0 & B_{y}=30 \mathrm{kN} \\
\xrightarrow{+} \Sigma F_{x}=0 ; & 40-A_{x}=0 & A_{x}=40 \mathrm{kN} \\
+\uparrow \Sigma F_{y}=0 ; & 30-A_{y}=0 & A_{y}=30 \mathrm{kN}
\end{array}
$$

Thus,

$$
F_{A}=\sqrt{A_{x}^{2}+A_{y}^{2}}=\sqrt{40^{2}+30^{2}}=50 \mathrm{kN}
$$

Since pin A is in double shear, Fig. b, the shear forces developed on the shear planes of pin A are

$$
V_{A}=\frac{F_{A}}{2}=\frac{50}{2}=25 \mathrm{kN}
$$

Average Shear Stress: The area of the shear plane for pin A is $A_{A}=\frac{\pi}{4}\left(0.025^{2}\right)=$ $0.4909\left(10^{-3}\right) \mathrm{m}^{2}$. We have

(a)

Ans.

Ans:
$\left(\tau_{\text {avg }}\right)_{A}=50.9 \mathrm{MPa}$

1-43.

If $P=5 \mathrm{kN}$, determine the average shear stress in the pins at A, B, and C. All pins are in double shear, and each has a diameter of 18 mm .

SOLUTION

Support Reactions: Referring to the FBD of the entire beam, Fig. a,
$\varsigma+\Sigma M_{A}=0 ; \quad 5(0.5)+30(2)+15(4)+5(5.5)-F_{B C}\left(\frac{3}{5}\right)(6)=0$
$F_{B C}=41.67 \mathrm{kN}$
$\varsigma+\Sigma M_{B}=0 ; \quad A_{y}(6)-5(0.5)-15(2)-30(4)-5(5.5)=0 \quad A_{y}=30.0 \mathrm{kN}$
$\xrightarrow{+} \Sigma F_{x}=0 ; \quad 41.67\left(\frac{4}{5}\right)-A_{x}=0$
$A_{x}=33.33 \mathrm{kN}$

Thus,

$$
F_{A}=\sqrt{A_{x}^{2}+A_{y}^{2}}=\sqrt{33.33^{2}+30.0^{2}}=44.85 \mathrm{kN}
$$

Average Shear Stress: Since all the pins are subjected to double shear, $V_{B}=V_{C}=\frac{F_{B C}}{2}=\frac{41.67}{2} \mathrm{kN}=20.83 \mathrm{kN}$ (Fig. b) and $V_{A}=22.42 \mathrm{kN}$ (Fig.c)

For pins B and C

$$
\begin{aligned}
& \tau_{B}=\tau_{C}=\frac{V_{C}}{A}=\frac{20.83\left(10^{3}\right)}{\frac{\pi}{4}\left(0.018^{2}\right)}=81.87 \mathrm{MPa}=81.9 \mathrm{MPa} \quad \text { Ans. } \\
& \tau_{A}=\frac{V_{A}}{A}=\frac{22.42\left(10^{3}\right)}{\frac{\pi}{4}\left(0.018^{2}\right)}=88.12 \mathrm{MPa}=88.1 \mathrm{MPa}
\end{aligned}
$$

(a)

(b)

$F_{A}=44.85 \mathrm{kN}$
(C)

Ans:

$$
\begin{aligned}
\tau_{B} & =\tau_{C}=81.9 \mathrm{MPa} \\
\tau_{A} & =88.1 \mathrm{MPa}
\end{aligned}
$$

*1-44.

Determine the maximum magnitude P of the loads the beam can support if the average shear stress in each pin is not to exceed 80 MPa . All pins are in double shear, and each has a diameter of 18 mm .

SOLUTION

Support Reactions: Referring to the FBD of the entire beam, Fig. a,
$\zeta+\Sigma M_{A}=0 ; \quad P(0.5)+6 P(2)+3 P(4)+P(5.5)-F_{B C}\left(\frac{3}{5}\right)(6)=0$

$$
F_{B C}=8.3333 P
$$

$\varsigma+\Sigma M_{B}=0 ; \quad A_{y}(6)-P(0.5)-3 P(2)-6 P(4)-P(5.5)=0 \quad A_{y}=6.00 P$
$\xrightarrow{+} \Sigma F_{x}=0 ; \quad 8.3333 P\left(\frac{4}{5}\right)-A_{x}=0 \quad A_{x}=6.6667 P$
Thus,

$$
F_{A}=\sqrt{A_{x}^{2}+A_{y}^{2}}=\sqrt{(6.6667 P)^{2}+(6.00 P)^{2}}=8.9691 P
$$

Average Shear Stress: Since all the pins are subjected to double shear, $V_{B}=V_{C}=\frac{F_{B C}}{2}=\frac{8.3333 P}{2}=4.1667 P$ (Fig. b) and $V_{A}=4.4845 P$ (Fig. c). Since $\operatorname{pin} A$ is subjected to a larger shear force, it is critical. Thus

$$
\tau_{\text {allow }}=\frac{V_{A}}{A} ; \quad 80\left(10^{6}\right)=\frac{4.4845 P}{\frac{\pi}{4}\left(0.018^{2}\right)}
$$

(a)

(b)

1-45.

The column is made of concrete having a density of $2.30 \mathrm{Mg} / \mathrm{m}^{3}$. At its top B it is subjected to an axial compressive force of 15 kN . Determine the average normal stress in the column as a function of the distance z measured from its base.

SOLUTION

$$
\begin{gathered}
+\uparrow \Sigma F_{y}=0 \quad P-15-9.187+2.297 z=0 \\
P=24.187-2.297 z \\
\sigma=\frac{P}{A}=\frac{24.187-2.297 z}{\pi(0.18)^{2}}=(238-22.6 z) \mathrm{kPa}
\end{gathered}
$$

Ans:
$\sigma=(238-22.6 z) \mathrm{kPa}$

1-46.

The beam is supported by two rods $A B$ and $C D$ that have cross-sectional areas of $12 \mathrm{~mm}^{2}$ and $8 \mathrm{~mm}^{2}$, respectively. If $d=1 \mathrm{~m}$, determine the average normal stress in each rod.

SOLUTION

$$
\begin{gathered}
\varsigma+\Sigma M_{A}=0 ; \quad F_{C D}(3)-6(1)=0 \\
+\uparrow \Sigma F_{y}=0 ; \quad F_{C D}=2 \mathrm{kN} \\
F_{A B}-6+2=0 \\
F_{A B}=4 \mathrm{kN} \\
\sigma_{A B}=\frac{F_{A B}}{A_{A B}} \frac{4\left(10^{3}\right)}{12\left(10^{-6}\right)}=333 \mathrm{MPa} \\
\sigma_{C D}=\frac{F_{C D}}{A_{C D}}=\frac{2\left(10^{3}\right)}{8\left(10^{-6}\right)}=250 \mathrm{MPa}
\end{gathered}
$$

Ans.

Ans.

[^2]
1-47.

The beam is supported by two rods $A B$ and $C D$ that have cross-sectional areas of $12 \mathrm{~mm}^{2}$ and $8 \mathrm{~mm}^{2}$, respectively. Determine the position d of the $6-\mathrm{kN}$ load so that the average normal stress in each rod is the same.

SOLUTION

$$
\begin{aligned}
& \zeta+\sum M_{O}=0 ; \quad F_{C D}(3-d)-F_{A B}(d)=0 \\
& \sigma=\frac{F_{A B}}{12}=\frac{F_{C D}}{8} \\
& F_{A B}=1.5 F_{C D}
\end{aligned}
$$

(1)

(2)

From Eqs. (1) and (2),

$$
\begin{aligned}
F_{C D}(3-d)-1.5 F_{C D}(d) & =0 \\
F_{C D}(3-d-1.5 d) & =0 \\
3-2.5 d & =0 \\
d & =1.20 \mathrm{~m}
\end{aligned}
$$

Ans.

Ans:
$d=1.20 \mathrm{~m}$

*1-48.

If $P=15 \mathrm{kN}$, determine the average shear stress in the pins at A, B, and C. All pins are in double shear, and each has a diameter of 18 mm .

SOLUTION

For pins B and C :
$\tau_{B}=\tau_{C}=\frac{V}{A}=\frac{82.5\left(10^{3}\right)}{\frac{\pi}{4}\left(\frac{18}{1000}\right)^{2}}=324 \mathrm{MPa}$

Ans.

For pin A :
$F_{A}=\sqrt{(82.5)^{2}+(142.9)^{2}}=165 \mathrm{kN}$
$\tau_{A}=\frac{V}{A}=\frac{82.5\left(10^{3}\right)}{\frac{\pi}{4}\left(\frac{18}{1000}\right)^{2}}=324 \mathrm{MPa}$

Ans.

Ans:

$\tau_{B}=324 \mathrm{MPa}$,
$\tau_{A}=324 \mathrm{MPa}$

1-49.

The railcar docklight is supported by the $\frac{1}{8}$-in.-diameter pin at A. If the lamp weighs 4 lb , and the extension arm $A B$ has a weight of $0.5 \mathrm{lb} / \mathrm{ft}$, determine the average shear stress in the pin needed to support the lamp. Hint: The shear force in the pin is caused by the couple moment required for equilibrium at A.

SOLUTION

$$
\begin{aligned}
& C+\sum M_{A}=0 ; \quad V(1.25)-1.5(18)-4(36)=0 \\
& V=136.8 \mathrm{lb} \\
& \tau_{\text {avg }}=\frac{V}{A}=\frac{136.8}{\frac{\pi}{4}\left(\frac{1}{8}\right)^{2}}=11.1 \mathrm{ksi}
\end{aligned}
$$

Ans.

Ans:
$\tau_{\text {avg }}=11.1 \mathrm{ksi}$

1-50.

The plastic block is subjected to an axial compressive force of 600 N . Assuming that the caps at the top and bottom distribute the load uniformly throughout the block, determine the average normal and average shear stress acting along section $a-a$.

SOLUTION

Along $a-a$:

$$
\begin{array}{ll}
+\swarrow \Sigma F_{x}=0 ; & V-600 \sin 30^{\circ}=0 \\
& V=300 \mathrm{~N} \\
+\searrow \Sigma F_{y}=0 ; & -N+600 \cos 30^{\circ}=0 \\
& N=519.6 \mathrm{~N}
\end{array}
$$

$$
\sigma_{a-a}=\frac{519.6}{(0.05)\left(\frac{0.1}{\cos 30^{\circ}}\right)}=90.0 \mathrm{kPa}
$$

$$
\tau_{a-a}=\frac{300}{(0.05)\left(\frac{0.1}{\cos 30^{\circ}}\right)}=52.0 \mathrm{kPa}
$$

Ans:

$\sigma_{a-a}=90.0 \mathrm{kPa}$,
$\tau_{a-a}=52.0 \mathrm{kPa}$

1-51.

The two steel members are joined together using a 30° scarf weld. Determine the average normal and average shear stress resisted in the plane of the weld.

SOLUTION

Internal Loadings: Referring to the FBD of the upper segment of the member sectioned through the scarf weld, Fig. a,

$$
\begin{array}{lll}
\Sigma F_{x}=0 ; & N-15 \sin 30^{\circ}=0 & N=7.50 \mathrm{kN} \\
\Sigma F_{y}=0 ; & V-15 \cos 30^{\circ}=0 & V=12.99 \mathrm{kN}
\end{array}
$$

Average Normal and Shear Stress: The area of the scarf weld is

$$
A=0.02\left(\frac{0.04}{\sin 30^{\circ}}\right)=1.6\left(10^{-3}\right) \mathrm{m}^{2}
$$

Thus,

$$
\begin{aligned}
& \sigma=\frac{N}{A_{n}}=\frac{7.50\left(10^{3}\right)}{1.6\left(10^{-3}\right)}=4.6875\left(10^{6}\right) \mathrm{Pa}=4.69 \mathrm{MPa} \\
& \tau=\frac{V}{A_{v}}=\frac{12.99\left(10^{3}\right)}{1.6\left(10^{-3}\right)}=8.119\left(10^{6}\right) \mathrm{Pa}=8.12 \mathrm{MPa}
\end{aligned}
$$

Ans.

Ans.

Ans:

$\sigma=4.69 \mathrm{MPa}$,
$\tau=8.12 \mathrm{MPa}$

*1-52.

The bar has a cross-sectional area of $400\left(10^{-6}\right) \mathrm{m}^{2}$. If it is subjected to a triangular axial distributed loading along its length which is 0 at $x=0$ and $9 \mathrm{kN} / \mathrm{m}$ at $x=1.5 \mathrm{~m}$, and to two concentrated loads as shown, determine the average normal stress in the bar as a function of x for $0 \leq x<0.6 \mathrm{~m}$.

SOLUTION

Internal Loading: Referring to the FBD of the right segment of the bar sectioned at x, Fig. a,

$$
\begin{array}{cl}
+\Sigma \Sigma F_{x}=0 ; & 8+4+\frac{1}{2}(6 x+9)(1.5-x)=0 \\
& N=\left\{18.75-3 x^{2}\right\} \mathrm{kN}
\end{array}
$$

Average Normal Stress:

$$
\begin{aligned}
\sigma=\frac{N}{A} & =\frac{\left(18.75-3 x^{2}\right)\left(10^{3}\right)}{400\left(10^{-6}\right)} \\
& =\left\{46.9-7.50 x^{2}\right\} \mathrm{MPa}
\end{aligned}
$$

Ans.

(a)

Ans:

$\sigma=\left\{46.9-7.50 x^{2}\right\} \mathrm{MPa}$

1-53.

The bar has a cross-sectional area of $400\left(10^{-6}\right) \mathrm{m}^{2}$. If it is subjected to a uniform axial distributed loading along its length of $9 \mathrm{kN} / \mathrm{m}$, and to two concentrated loads as shown, determine the average normal stress in the bar as a function of x for $0.6 \mathrm{~m}<x \leq 1.5 \mathrm{~m}$.

SOLUTION

Internal Loading: Referring to a FBD of the right segment of the bar sectioned at x,

$$
\begin{aligned}
\xrightarrow{+} \Sigma F_{x}=0 ; & 4+9(1.5-x)-N=0 \\
& N=\{17.5-9 x\} \mathrm{kN}
\end{aligned}
$$

Average Normal Stress:

$$
\begin{aligned}
\sigma=\frac{N}{A} & =\frac{(17.5-9 x)\left(10^{3}\right)}{400\left(10^{-6}\right)} \\
& =\{43.75-22.5 x\} \mathrm{MPa}
\end{aligned}
$$

Ans.

Ans:

$\sigma=\{43.75-22.5 x\} \mathrm{MPa}$

1-54.

The two members used in the construction of an aircraft fuselage are joined together using a 30° fish-mouth weld. Determine the average normal and average shear stress on the plane of each weld. Assume each inclined plane supports a horizontal force of 400 lb .

SOLUTION

$N-400 \sin 30^{\circ}=0 ; \quad N=200 \mathrm{lb}$
$400 \cos 30^{\circ}-V=0 ; \quad V=346.41 \mathrm{lb}$
$A^{\prime}=\frac{1.5(1)}{\sin 30^{\circ}}=3 \mathrm{in}^{2}$
$\sigma=\frac{N}{A^{\prime}}=\frac{200}{3}=66.7 \mathrm{psi}$
$\tau=\frac{V}{A^{\prime}}=\frac{346.41}{3}=115 \mathrm{psi}$

Ans.

Ans.

Ans:

$\sigma=66.7 \mathrm{psi}$,
$\tau=115 \mathrm{psi}$

1-55.

The $2-\mathrm{Mg}$ concrete pipe has a center of mass at point G. If it is suspended from cables $A B$ and $A C$, determine the average normal stress in the cables. The diameters of $A B$ and $A C$ are 12 mm and 10 mm , respectively.

SOLUTION

Internal Loadings: The normal force developed in cables $A B$ and $A C$ can be determined by considering the equilibrium of the hook for which the free-body diagram is shown in Fig. a.
$\begin{array}{ll}\Sigma F_{x^{\prime}}=0 ; & 2000(9.81) \cos 45^{\circ}-F_{A B} \cos 15^{\circ}=0 \quad F_{A B}=14362.83 \mathrm{~N}(\mathrm{~T}) \\ \Sigma F_{y^{\prime}}=0 ; & 2000(9.81) \sin 45^{\circ}-14362.83 \sin 15^{\circ}-F_{A C}=0 \quad F_{A C}=10156.06 \mathrm{~N}(\mathrm{~T})\end{array}$
Average Normal Stress: The cross-sectional areas of cables $A B$ and $A C$ are $A_{A B}=\frac{\pi}{4}\left(0.012^{2}\right)=0.1131\left(10^{-3}\right) \mathrm{m}^{2} \quad$ and $\quad A_{A C}=\frac{\pi}{4}\left(0.01^{2}\right)=78.540\left(10^{-6}\right) \mathrm{m}^{2}$. We have

$$
\begin{aligned}
& \sigma_{A B}=\frac{F_{A B}}{A_{A B}}=\frac{14362.83}{0.1131\left(10^{-3}\right)}=127 \mathrm{MPa} \\
& \sigma_{A C}=\frac{F_{A C}}{A_{A C}}=\frac{10156.06}{78.540\left(10^{-6}\right)}=129 \mathrm{MPa}
\end{aligned}
$$

Ans.

Ans.

Ans:

$\sigma_{A B}=127 \mathrm{MPa}, \sigma_{A C}=129 \mathrm{MPa}$

*1-56.

The $2-\mathrm{Mg}$ concrete pipe has a center of mass at point G. If it is suspended from cables $A B$ and $A C$, determine the diameter of cable $A B$ so that the average normal stress in this cable is the same as in the $10-\mathrm{mm}$-diameter cable $A C$.

SOLUTION

Internal Loadings: The normal force in cables $A B$ and $A C$ can be determined by considering the equilibrium of the hook for which the free-body diagram is shown in Fig. a.
$\Sigma F_{x^{\prime}}=0 ; 2000(9.81) \cos 45^{\circ}-F_{A B} \cos 15^{\circ}=0 \quad F_{A B}=14362.83 \mathrm{~N}(\mathrm{~T})$
$\Sigma F_{y^{\prime}}=0 ; 2000(9.81) \sin 45^{\circ}-14362.83 \sin 15^{\circ}-F_{A C}=0 \quad F_{A C}=10156.06 \mathrm{~N}(\mathrm{~T})$
Average Normal Stress: The cross-sectional areas of cables $A B$ and $A C$ are $A_{A B}=\frac{\pi}{4} d_{A B}{ }^{2}$ and $A_{A C}=\frac{\pi}{4}\left(0.01^{2}\right)=78.540\left(10^{-6}\right) \mathrm{m}^{2}$.

Here, we require

$$
\begin{aligned}
& \sigma_{A B}=\sigma_{A C} \\
& \frac{F_{A B}}{A_{A B}}=\frac{F_{A C}}{A_{A C}} \\
& \frac{14362.83}{\frac{\pi}{4} d_{A B}^{2}}=\frac{10156.06}{78.540\left(10^{-6}\right)} \\
& d_{A B}=0.01189 \mathrm{~m}=11.9 \mathrm{~mm}
\end{aligned}
$$

Ans.
(a)

Ans:
$d_{A B}=11.9 \mathrm{~mm}$

1-57.

The pier is made of material having a specific weight γ. If it has a square cross section, determine its width w as a function of z so that the average normal stress in the pier remains constant. The pier supports a constant load \mathbf{P} at its top where its width is w_{1}.

SOLUTION

Assume constant stress σ_{1}, then at the top,

$$
\begin{equation*}
\sigma_{1}=\frac{P}{w_{1}{ }^{2}} \tag{1}
\end{equation*}
$$

For an increase in z the area must increase,

$$
d A=\frac{d W}{\sigma_{1}}=\frac{\gamma A d z}{\sigma_{1}} \quad \text { or } \quad \frac{d A}{A}=\frac{\gamma}{\sigma_{1}} d z
$$

For the top section:

$$
\begin{aligned}
\int_{A_{1}}^{A} \frac{d A}{A} & =\frac{\gamma}{\sigma_{1}} \int_{0}^{z} d z \\
\operatorname{In} \frac{A}{A_{1}} & =\frac{\gamma}{\sigma_{1}} z \\
A & =A_{1} e^{\left(\frac{\gamma}{\sigma_{1}}\right) z} \\
A & =w^{2} \\
A_{1} & =w_{1}^{2} \\
w & =w_{1} e^{\left(\frac{\gamma}{2 \sigma_{1}}\right) z}
\end{aligned}
$$

From Eq. (1),

$$
w=w_{1} e^{\left[\frac{w_{1}^{2} \gamma}{2 P}\right] z}
$$

Ans.

Ans:
$w=w_{1} e^{\left[\frac{w_{1}^{2} \gamma}{2 P}\right] z}$

1-58.

Rods $A B$ and $B C$ have diameters of 4 mm and 6 mm , respectively. If the 3 kN force is applied to the ring at B, determine the angle θ so that the average normal stress in each rod is equivalent. What is this stress?

SOLUTION

Method of Joints: Referring to the FBD of joint B, Fig. a,

$+\uparrow \Sigma F_{y}=0 ;$	$F_{B C}\left(\frac{3}{5}\right)-3 \cos \theta=0$	$F_{B C}=5 \cos \theta \mathrm{kN}$
$\xrightarrow{+} \Sigma F_{x}=0 ;$	$(5 \cos \theta)\left(\frac{4}{5}\right)-3 \sin \theta-F_{A B}=0$	$F_{A B}=(4 \cos \theta-3 \sin \theta) \mathrm{kN}$

Average Normal Stress:

$$
\begin{aligned}
& \sigma_{A B}=\frac{F_{A B}}{A_{A B}}=\frac{[4 \cos \theta-3 \sin \theta]\left(10^{3}\right)}{\frac{\pi}{4}(0.004)^{2}}=\frac{250\left(10^{6}\right)}{\pi}(4 \cos \theta-3 \sin \theta) \\
& \sigma_{B C}=\frac{F_{B C}}{A_{B C}}=\frac{(5 \cos \theta)\left(10^{3}\right)}{\frac{\pi}{4}(0.006)^{2}}=\left[\frac{555.56\left(10^{6}\right)}{\pi}\right] \cos \theta
\end{aligned}
$$

It is required that

$$
\begin{aligned}
\sigma_{A B} & =\sigma_{B C} \\
\frac{250\left(10^{6}\right)}{\pi}(4 \cos \theta-3 \sin \theta) & =\left[\frac{555.56\left(10^{6}\right)}{\pi}\right] \cos \theta \\
1.7778 \cos \theta-3 \sin \theta & =0 \\
\tan \theta & =\frac{1.7778}{3} \\
\theta & =30.65^{\circ}=30.7^{\circ}
\end{aligned}
$$

Ans.

Then

$$
\sigma=\sigma_{B C}=\left[\frac{555.56\left(10^{6}\right)}{\pi}\right] \cos 30.65^{\circ}=152.13\left(10^{6}\right) \mathrm{Pa}=152 \mathrm{MPa}
$$

Ans.

Ans:
$\theta=30.7^{\circ}$,
$\sigma=152 \mathrm{MPa}$

1-59.

The uniform bar, having a cross-sectional area of A and mass per unit length of m, is pinned at its center. If it is rotating in the horizontal plane at a constant angular rate of ω, determine the average normal stress in the bar as a function of x.

SOLUTION

Equation of Motion:

$$
\begin{gathered}
\pm \Sigma F_{x}=m a_{N} ; \quad N=m\left[\frac{1}{2}(L-2 x)\right] \omega^{2}\left[\frac{1}{4}(L+2 x)\right] \\
=\frac{m \omega^{2}}{8}\left(L^{2}-4 x^{2}\right)
\end{gathered}
$$

Average Normal Stress:

$$
\sigma=\frac{N}{A}=\frac{m \omega^{2}}{8 A}\left(L^{2}-4 x^{2}\right)
$$

Ans.

Ans:
$\sigma=\frac{m \omega^{2}}{8 A}\left(L^{2}-4 x^{2}\right)$

*1-60.

The bar has a cross-sectional area of $400\left(10^{-6}\right) \mathrm{m}^{2}$. If it is subjected to a uniform axial distributed loading along its length and to two concentrated loads, determine the average normal stress in the bar as a function of x for $0<x \leq 0.5 \mathrm{~m}$.

SOLUTION

Equation of Equilibrium:

$\xrightarrow{ \pm} \Sigma F_{x}=0 ; \quad-N+3+6+8(1.25-x)=0$

$$
N=(19.0-8.00 x) \mathrm{kN}
$$

Average Normal Stress:

$$
\begin{aligned}
\sigma=\frac{N}{A} & =\frac{(19.0-8.00 x)\left(10^{3}\right)}{400\left(10^{-6}\right)} \\
& =(47.5-20.0 x) \mathrm{MPa}
\end{aligned}
$$

1-61.

The bar has a cross-sectional area of $400\left(10^{-6}\right) \mathrm{m}^{2}$. If it is subjected to a uniform axial distributed loading along its length and to two concentrated loads, determine the average normal stress in the bar as a function of x for $0.5 \mathrm{~m}<x \leq 1.25 \mathrm{~m}$.

SOLUTION

Equation of Equilibrium:

$$
\begin{array}{r}
\xrightarrow{+} \Sigma F_{x}=0 ; \quad-N+3+8(1.25-x)=0 \\
N=(13.0-8.00 x) \mathrm{kN}
\end{array}
$$

Average Normal Stress:

$$
\begin{aligned}
\sigma=\frac{N}{A} & =\frac{(13.0-8.00 x)\left(10^{3}\right)}{400\left(10^{-6}\right)} \\
& =(32.5-20.0 x) \mathrm{MPa}
\end{aligned}
$$

Ans.

Ans:
$\sigma=(32.5-20.0 x) \mathrm{MPa}$

1-62.

The prismatic bar has a cross-sectional area A. If it is subjected to a distributed axial loading that increases linearly from $w=0$ at $x=0$ to $w=w_{0}$ at $x=a$, and then decreases linearly to $w=0$ at $x=2 a$, determine the average normal stress in the bar as a function of x for $0 \leq x<a$.

SOLUTION

Equation of Equilibrium:

$$
\begin{gathered}
\xrightarrow[\rightarrow]{ } \Sigma F_{x}=0 ; \quad-N+\frac{1}{2}\left(\frac{w_{0}}{a} x+w_{0}\right)(a-x)+\frac{1}{2} w_{0} a=0 \\
N=\frac{w_{0}}{2 a}\left(2 a^{2}-x^{2}\right)
\end{gathered}
$$

Ans:
$\sigma=\frac{w_{0}}{2 a A}\left(2 a^{2}-x^{2}\right)$

1-63.

The prismatic bar has a cross-sectional area A. If it is subjected to a distributed axial loading that increases linearly from $w=0$ at $x=0$ to $w=w_{0}$ at $x=a$, and then decreases linearly to $w=0$ at $x=2 a$, determine the average normal stress in the bar as a function of x for $a<x \leq 2 a$.

SOLUTION

Equation of Equilibrium:

$$
\begin{gathered}
\stackrel{+}{\longrightarrow} \Sigma F_{x}=0 ; \quad-N+\frac{1}{2}\left[\frac{w_{0}}{a}(2 a-x)\right](2 a-x)=0 \\
N=\frac{w_{0}}{2 a}(2 a-x)^{2}
\end{gathered}
$$

Average Normal Stress:

$\sigma=\frac{N}{A}=\frac{\frac{w_{0}}{2 a}(2 a-x)^{2}}{A}=\frac{w_{0}}{2 a A}(2 a-x)^{2}$

Ans.

*1-64.
The bars of the truss each have a cross-sectional area of $1.25 \mathrm{in}^{2}$. Determine the average normal stress in members $A B, B D$, and $C E$ due to the loading $P=6 \mathrm{kip}$. State whether the stress is tensile or compressive.

SOLUTION

Method of Joints: Consider the equilibrium of joint A first, and then joint B followed by joint C.

Joint \boldsymbol{A} (Fig. a)

$\xrightarrow{+} \Sigma F_{x}=0 ; \quad 3-F_{A C}\left(\frac{3}{5}\right)=0 \quad F_{A C}=5.00 \mathrm{kip}(\mathrm{C})$
$+\uparrow \Sigma F_{y}=0 ; \quad 5.00\left(\frac{4}{5}\right)-F_{A B}=0 \quad F_{A B}=4.00 \mathrm{kip}(\mathrm{T})$
Joint \boldsymbol{B} (Fig. b)

$$
\begin{array}{lll}
+\Sigma F_{x}=0 ; & 6-F_{B C}=0 & F_{B C}=6.00 \mathrm{kip}(\mathrm{C}) \\
+\uparrow \Sigma F_{y}=0 ; & 4.00-F_{B D}=0 & F_{B D}=4.00 \mathrm{kip}(\mathrm{~T})
\end{array}
$$

Joint \boldsymbol{C} (Fig. c)

$\xrightarrow{+} \Sigma F_{x}=0 ; \quad 6.00+5\left(\frac{3}{5}\right)-F_{C D}\left(\frac{3}{5}\right)=0 \quad F_{C D}=15.0 \mathrm{kip}(\mathrm{T})$
$+\uparrow \Sigma F_{y}=0 ; \quad F_{C E}-5\left(\frac{4}{5}\right)-15\left(\frac{4}{5}\right)=0 \quad F_{C E}=16.0 \mathrm{kip}(\mathrm{C})$

Average Normal Stress:

$$
\begin{aligned}
& \sigma_{A B}=\frac{F_{A B}}{A}=\frac{4.00}{1.25}=3.20 \mathrm{ksi}(\mathrm{~T}) \\
& \sigma_{B D}=\frac{F_{B D}}{A}=\frac{4.00}{1.25}=3.20 \mathrm{ksi}(\mathrm{~T}) \\
& \sigma_{C E}=\frac{F_{C E}}{A}=\frac{16.0}{1.25}=12.8 \mathrm{ksi}(\mathrm{C})
\end{aligned}
$$

Ans.

Ans.

Ans.

(b)

(C)

Ans:
$\sigma_{A B}=3.20 \mathrm{ksi}(\mathrm{T})$,
$\sigma_{B D}=3.20 \mathrm{ksi}(\mathrm{T})$,
$\sigma_{C E}=12.8 \mathrm{ksi}(\mathrm{C})$

1-65.

The bars of the truss each have a cross-sectional area of $1.25 \mathrm{in}^{2}$. If the maximum average normal stress in any bar is not to exceed 20 ksi , determine the maximum magnitude P of the loads that can be applied to the truss.

SOLUTION

Method of Joints: Consider the equilibrium of joint A first and then joint B followed by joint C.
Joint \boldsymbol{A} (Fig. a)
$\xrightarrow{+} \Sigma F_{x}=0 ; \quad 0.5 P-F_{A C}\left(\frac{3}{5}\right)=0 \quad \quad F_{A C}=0.8333 P(\mathrm{C})$
$+\uparrow \Sigma F_{y}=0 ; \quad 0.8333 P\left(\frac{4}{5}\right)-F_{A B}=0 \quad F_{A B}=0.6667 P(\mathrm{~T})$
Joint B (Fig. b)
$\xrightarrow{ \pm} \Sigma F_{x}=0 ; \quad P-F_{B C}=0$
$F_{B C}=P(\mathrm{C})$
$+\uparrow \Sigma F_{y}=0 ; \quad 0.6667 P-F_{B D}=0$
$F_{B D}=0.6667 P(\mathrm{~T})$

Joint \boldsymbol{C} (Fig. c)

$$
\begin{array}{lll}
+ \\
\rightarrow \\
F_{x} & =0 ; & P+0.8333\left(\frac{3}{5}\right)-F_{C D}\left(\frac{3}{5}\right)=0
\end{array} \quad F_{C D}-2.50 P(\mathrm{~T})
$$

Average Normal Stress: Since member $C E$ is subjected to the largest axial force, it is the critical member.

$$
\begin{aligned}
\sigma_{\text {allow }}=\frac{F_{C E}}{A_{C E}} ; \quad 20 & =\frac{2.6667 P}{} \\
P & =9.375 \mathrm{kip}
\end{aligned}
$$

Ans.

(a)

(b)

(C)

Ans:
$P=9.375$ kip

1-66.

Determine the largest load \mathbf{P} that can be applied to the frame without causing either the average normal stress or the average shear stress at section $a-a$ to exceed $\sigma=150 \mathrm{MPa}$ and $\tau=60 \mathrm{MPa}$, respectively. Member $C B$ has a square cross section of 25 mm on each side.

SOLUTION

Analyze the equilibrium of joint C using the FBD shown in Fig. a,
$+\uparrow \Sigma F_{y}=0 ; \quad F_{B C}\left(\frac{4}{5}\right)-P=0 \quad F_{B C}=1.25 P$
Referring to the FBD of the cut segment of member $B C$ Fig. b.
$\xrightarrow{+} \Sigma F_{x}=0 ; \quad N_{a-a}-1.25 P\left(\frac{3}{5}\right)=0 \quad N_{a-a}=0.75 P$
$+\uparrow \Sigma F_{y}=0 ; \quad 1.25 P\left(\frac{4}{5}\right)-V_{a-a}=0 \quad V_{a-a}=P$
The cross-sectional area of section $a-a$ is $A_{a-a}=(0.025)\left(\frac{0.025}{3 / 5}\right) \Rightarrow$
$1.0417\left(10^{-3}\right) \mathrm{m}^{2}$. For Normal stress,
$\sigma_{\text {allow }}=\frac{N_{a-a}}{A_{a-a}} ; \quad 150\left(10^{6}\right)=\frac{0.75 P}{1.0417\left(10^{-3}\right)}$
$P=208.33\left(10^{3}\right) \mathrm{N}=208.33 \mathrm{kN}$
For Shear Stress
$\tau_{\text {allow }}=\frac{V_{a-a}}{A_{a-a}} ; \quad 60\left(10^{6}\right)=\frac{P}{1.0417\left(10^{-3}\right)}$
$P=62.5\left(10^{3}\right) \mathrm{N}=62.5 \mathrm{kN}($ Controls! $)$
Ans.

(b)

Ans:
$P=62.5 \mathrm{kN}$

1-67.

Determine the greatest constant angular velocity ω of the flywheel so that the average normal stress in its rim does not exceed $\sigma=15 \mathrm{MPa}$. Assume the rim is a thin ring having a thickness of 3 mm , width of 20 mm , and a mass of $30 \mathrm{~kg} / \mathrm{m}$. Rotation occurs in the horizontal plane. Neglect the effect of the spokes in the analysis. Hint: Consider a free-body diagram of a semicircular segment of the ring. The center of mass for this segment is located at $\hat{r}=2 r / \pi$ from the center.

SOLUTION

Ans.

Ans:

$\omega=6.85 \mathrm{rad} / \mathrm{s}$

*1-68.

The radius of the pedestal is defined by $r=\left(0.5 e^{-0.08 y^{2}}\right) \mathrm{m}$, where y is in meters. If the material has a density of $2.5 \mathrm{Mg} / \mathrm{m}^{3}$, determine the average normal stress at the support.

SOLUTION

$A=\pi(0.5)^{2}=0.7854 \mathrm{~m}^{2}$
$d V=\pi\left(r^{2}\right) d y=\pi(0.5)^{2}\left(e^{-0.08 y^{2}}\right)^{2}$
$V=\int_{0}^{3} \pi(0.5)^{2}\left(e^{-0.08 y^{2}}\right)^{2} d y=0.7854 \int_{0}^{3}\left(e^{-0.08 y^{2}}\right)^{2} d y$
$W=\rho g V=(2500)(9.81)(0.7854) \int_{0}^{3}\left(e^{-0.08 y^{2}}\right)^{2} d y$
$W=19.262\left(10^{3}\right) \int_{0}^{3}\left(e^{-0.08 y^{2}}\right)^{2} d y=38.849 \mathrm{kN}$
$\sigma=\frac{W}{A}=\frac{38.849}{0.7854}=49.5 \mathrm{kPa}$

Ans:

$\sigma=49.5 \mathrm{kPa}$

1-69.

If A and B are both made of wood and are $\frac{3}{8}$ in. thick, determine to the nearest $\frac{1}{4}$ in. the smallest dimension h of the vertical segment so that it does not fail in shear. The allowable shear stress for the segment is $\tau_{\text {allow }}=300 \mathrm{psi}$.

SOLUTION

$\tau_{\text {allow }}=300=\frac{307.7}{\left(\frac{3}{8}\right) h}$

$$
h=2.74 \mathrm{in} .
$$

Use $h=2 \frac{3}{4} \mathrm{in}$.

Ans.

Ans:
Use $h=2 \frac{3}{4} \mathrm{in}$.

1-70.

The lever is attached to the shaft A using a key that has a width d and length of 25 mm . If the shaft is fixed and a vertical force of 200 N is applied perpendicular to the handle, determine the dimension d if the allowable shear stress for the key is $\tau_{\text {allow }}=35 \mathrm{MPa}$.

SOLUTION

$$
\begin{array}{ll}
\varsigma+\Sigma M_{A}=0 ; & F_{a-a}(20)-200(500)=0 \\
& F_{a-a}=5000 \mathrm{~N} \\
\tau_{\text {allow }}=\frac{F_{a-a}}{A_{a-a}} ; & 35\left(10^{6}\right)=\frac{5000}{d(0.025)} \\
& d=0.00571 \mathrm{~m}=5.71 \mathrm{~mm}
\end{array}
$$

Ans.

Ans:
$d=5.71 \mathrm{~mm}$

1-71.

The connection is made using a bolt and nut and two washers. If the allowable bearing stress of the washers on the boards is $\left(\sigma_{b}\right)_{\text {allow }}=2 \mathrm{ksi}$, and the allowable tensile stress within the bolt shank S is $\left(\sigma_{t}\right)_{\text {allow }}=18$ ksi, determine the maximum allowable tension in the bolt shank. The bolt shank has a diameter of 0.31 in ., and the washers have an outer diameter of 0.75 in . and inner diameter (hole) of 0.50 in .

SOLUTION

Allowable Normal Stress: Assume tension failure

$$
\begin{aligned}
\sigma_{\text {allow }}=\frac{P}{A} ; \quad 18 & =\frac{P}{\frac{\pi}{4}\left(0.31^{2}\right)} \\
P & =1.36 \mathrm{kip}
\end{aligned}
$$

Allowable Bearing Stress: Assume bearing failure

$$
\begin{aligned}
\left(\sigma_{b}\right)_{\text {allow }}=\frac{P}{A} ; \quad 2 & =\frac{P}{\frac{\pi}{4}\left(0.75^{2}-0.50^{2}\right)} \\
P & =0.491 \mathrm{kip}(\text { controls! })
\end{aligned}
$$

Ans.

Ans:
$P=0.491$ kip

*1-72.

The tension member is fastened together using two bolts, one on each side of the member as shown. Each bolt has a diameter of 0.3 in . Determine the maximum load P that can be applied to the member if the allowable shear stress for the bolts is $\tau_{\text {allow }}=12 \mathrm{ksi}$ and the allowable average normal stress is $\sigma_{\text {allow }}=20 \mathrm{ksi}$.

SOLUTION

$$
\begin{array}{ll}
\Sigma+\Sigma F_{y}=0 ; & N-P \sin 60^{\circ}=0 \\
& P=1.1547 N \\
\swarrow+\Sigma F_{x}=0 ; & V-P \cos 60^{\circ}=0 \\
& P=2 V
\end{array}
$$

(1)

Assume failure due to shear:

$\tau_{\text {allow }}=12=\frac{V}{(2) \frac{\pi}{4}(0.3)^{2}}$
$V=1.696$ kip
From Eq. (2),
$P=3.39$ kip
Assume failure due to normal force:
$\sigma_{\text {allow }}=20=\frac{N}{(2) \frac{\pi}{4}(0.3)^{2}}$
$N=2.827 \mathrm{kip}$
From Eq. (1),
$P=3.26$ kip (controls)
Ans.

1-73.

The steel swivel bushing in the elevator control of an airplane is held in place using a nut and washer as shown in Fig. (a). Failure of the washer A can cause the push rod to separate as shown in Fig. (b). If the maximum average shear stress is $\tau_{\text {max }}=21 \mathrm{ksi}$, determine the force \mathbf{F} that must be applied to the bushing. The washer is $\frac{1}{16} \mathrm{in}$. thick.

SOLUTION

$$
\begin{aligned}
& \tau_{\text {avg }}=\frac{V}{A} ; \quad 21\left(10^{3}\right)=\frac{F}{2 \pi(0.375)\left(\frac{1}{16}\right)} \\
& F=3092.5 \mathrm{lb}=3.09 \mathrm{kip}
\end{aligned}
$$

Ans.

Ans:
$F=3.09$ kip

1-74.

The spring mechanism is used as a shock absorber for a load applied to the drawbar $A B$. Determine the force in each spring when the $50-\mathrm{kN}$ force is applied. Each spring is originally unstretched and the drawbar slides along the smooth guide posts $C G$ and $E F$. The ends of all springs are attached to their respective members. Also, what is the required diameter of the shank of bolts $C G$ and $E F$ if the allowable stress for the bolts is $\sigma_{\text {allow }}=150 \mathrm{MPa}$?

SOLUTION

Equations of Equilibrium:

$$
\begin{gathered}
\varsigma+\Sigma M_{H}=0 ; \quad-F_{B F}(200)+F_{A G}(200)=0 \\
F_{B F}=F_{A G}=F \\
+\uparrow \Sigma F_{y}=0 ;
\end{gathered} 2 F+F_{H}-50=0
$$

Required,

$$
\begin{aligned}
\Delta_{H}=\Delta_{B} ; \quad \frac{F_{H}}{80} & =\frac{F}{60} \\
F & =0.75 F_{H}
\end{aligned}
$$

Solving Eqs. (1) and (2) yields,

$$
\begin{aligned}
& F_{H}=20.0 \mathrm{kN} \\
& F_{B F}=F_{A G}=F=15.0 \mathrm{kN}
\end{aligned}
$$

Allowable Normal Stress: Design of bolt shank size.

$$
\begin{gathered}
\sigma_{\text {allow }}=\frac{P}{A} ; \quad 150\left(10^{6}\right)=\frac{15.0\left(10^{3}\right)}{\frac{\pi}{4} d^{2}} \\
d=0.01128 \mathrm{~m}=11.3 \mathrm{~mm} \\
d_{E F}=d_{C G}=11.3 \mathrm{~mm}
\end{gathered}
$$

(2)

(1)

Ans.
Ans.

Ans.

Ans:

$F_{H}=20.0 \mathrm{kN}$,
$F_{B F}=F_{A G}=15.0 \mathrm{kN}$, $d_{E F}=d_{C G}=11.3 \mathrm{~mm}$

1-75.

Determine the size of square bearing plates A^{\prime} and B^{\prime} required to support the loading. Take $P=1.5 \mathrm{kip}$. Dimension the plates to the nearest $\frac{1}{2} \mathrm{in}$. The reactions at the supports are vertical and the allowable bearing stress for the plates is $\left(\sigma_{b}\right)_{\text {allow }}=400$ psi.

SOLUTION

For Plate A:

$\sigma_{\text {allow }}=400=\frac{3.583\left(10^{3}\right)}{a_{A^{\prime}}^{2}}$
$a_{A^{\prime}}=2.99 \mathrm{in}$.
Use a 3 in. $\times 3$ in. plate

For Plate \boldsymbol{B}^{\prime} :

$\sigma_{\text {allow }}=400=\frac{6.917\left(10^{3}\right)}{a_{B^{\prime}}^{2}}$
$a_{B^{\prime}}=4.16 \mathrm{in}$.
Use a $4 \frac{1}{2}$ in. $\times 4 \frac{1}{2}$ in. plate

Ans.

Ans.

Ans:

For A^{\prime} :
Use a 3 in. $\times 3$ in. plate,
For B^{\prime} :
Use a $4 \frac{1}{2}$ in. $\times 4 \frac{1}{2}$ in. plate

*1-76.

Determine the maximum load \mathbf{P} that can be applied to the beam if the bearing plates A^{\prime} and B^{\prime} have square cross sections of $2 \mathrm{in} . \times 2 \mathrm{in}$. and 4 in . $\times 4 \mathrm{in}$., respectively, and the allowable bearing stress for the material is $\left(\sigma_{b}\right)_{\text {allow }}=400 \mathrm{psi}$.

SOLUTION

$\varsigma+\Sigma M_{A}=0 ; \quad B_{y}(15)-2(5)-3(10)-2(15)-P(225)=0$

$$
B_{y}=1.5 P+4.667
$$

$+\uparrow \Sigma F_{y}=0 ; \quad A_{y}+1.5 P+4.667-9-P=0$
$A_{y}=4.333-0.5 P$
At A :

$0.400=\frac{4.333-0.5 P}{2(2)}$

$$
P=5.47 \mathrm{kip}
$$

At B :

$$
\begin{gathered}
0.400=\frac{1.5 P+4.667}{4(4)} \\
P=1.16 \mathrm{kip}
\end{gathered}
$$

Thus,

$$
P_{\text {allow }}=1.16 \mathrm{kip}
$$

Ans:
$P_{\text {allow }}=1.16$ kip

1-77.

Determine the required diameter of the pins at A and B to the nearest $\frac{1}{16}$ in. if the allowable shear stress for the material is $\tau_{\text {allow }}=6 \mathrm{ksi}$. Pin A is subjected to double shear, whereas $\mathrm{pin} B$ is subjected to single shear.

SOLUTION

Support Reaction: Referring to the FBD of the entire frame, Fig. a,
$\varsigma+\Sigma M_{D}=0 ; \quad A_{y}(12)-3(18)=0 \quad A_{y}=2.00 \mathrm{kip}$
$\xrightarrow{+} \Sigma F_{x}=0 ;$
$3-A_{x}=0$
$A_{x}=3.00 \mathrm{kip}$
Thus,

$$
F_{A}=\sqrt{A_{x}^{2}+A_{y}^{2}}=\sqrt{3.00^{2}+2.00^{2}}=3.6056 \mathrm{kip}
$$

Consider the equilibrium of joint C, Fig. b,

$$
\xrightarrow{+} \Sigma F_{x}=0 ; \quad 3-F_{B C}\left(\frac{3}{5}\right)=0 \quad F_{B C}=5.00 \mathrm{kip}
$$

Average Shear Stress: Pin A is subjected to double shear, Fig. c.

Thus, $V_{A}=\frac{F_{A}}{2}=\frac{3.6056}{2}=1.8028$ kip

$$
\tau_{\text {allow }}=\frac{V_{A}}{A_{A}} ; \quad b=\frac{1.8028}{\frac{\pi}{4} d_{A}^{2}} \quad d_{A}=0.6185 \mathrm{in} \text {. Use } d_{A}=\frac{5}{8} \text { in. }
$$

Since pin B is subjected to single shear; Fig. $d, V_{B}=F_{B C}=5.00$ kip

$$
\tau_{\text {allow }}=\frac{V_{B}}{A_{B}} ; \quad b=\frac{5.00}{\frac{\pi}{4} d_{B}^{2}} \quad d_{B}=1.0301 \mathrm{in.} \text { Use } d_{B}=1 \frac{1}{16} \mathrm{in} \text {. }
$$

Ans.

(b)

(d)

Ans:
Use $d_{A}=\frac{5}{8}$ in.,
Use $d_{B}=1 \frac{1}{16}$ in.

1-78.

If the allowable tensile stress for wires $A B$ and $A C$ is $\sigma_{\text {allow }}=200 \mathrm{MPa}$, determine the required diameter of each wire if the applied load is $P=6 \mathrm{kN}$.

SOLUTION

Normal Forces: Analyzing the equilibrium of joint A, Fig. a,

$$
\begin{array}{ll}
\pm \Sigma F_{x}=0 ; & F_{A C}\left(\frac{3}{5}\right)-F_{A B} \sin 45^{\circ}=0 \\
+\uparrow \Sigma F_{y}=0 ; & F_{A C}\left(\frac{4}{5}\right)+F_{A B} \cos 45^{\circ}-6=0
\end{array}
$$

Solving Eqs. (1) and (2)

$$
F_{A C}=4.2857 \mathrm{kN} \quad F_{A B}=3.6365 \mathrm{kN}
$$

Average Normal Stress: For wire $A B$,

$$
\begin{aligned}
\sigma_{\text {allow }}=\frac{F_{A B}}{A_{A B}} ; \quad 200\left(10^{6}\right) & =\frac{3.6365\left(10^{3}\right)}{\frac{\pi}{4} d_{A B}^{2}} \\
d_{A B} & =0.004812 \mathrm{~m}=4.81 \mathrm{~mm}
\end{aligned}
$$

For wire $A C$,

$$
\begin{gathered}
\sigma_{\text {allow }}=\frac{F_{A C}}{A_{A C}} ; \quad 200\left(10^{6}\right)=\frac{4.2857\left(10^{3}\right)}{4} d_{A C}^{2} \\
d_{A C}=0.005223 \mathrm{~m}=5.22 \mathrm{~mm}
\end{gathered}
$$

(2)

(a)

Ans.

Ans:
$d_{A B}=4.81 \mathrm{~mm}$,
$d_{A C}=5.22 \mathrm{~mm}$

1-79.

If the allowable tensile stress for wires $A B$ and $A C$ is $\sigma_{\text {allow }}=180 \mathrm{MPa}$, and wire $A B$ has a diameter of 5 mm and $A C$ has a diameter of 6 mm , determine the greatest force P that can be applied to the chain.

SOLUTION

Normal Forces: Analyzing the equilibrium of joint A, Fig. a,

$$
\begin{array}{ll}
\xrightarrow[\rightarrow]{ } \Sigma F_{x}=0 ; & F_{A C}\left(\frac{3}{5}\right)-F_{A B} \sin 45^{\circ}=0 \\
+\uparrow \Sigma F_{y}=0 ; & F_{A C}\left(\frac{4}{5}\right)+F_{A B} \cos 45^{\circ}-P=0 \tag{2}
\end{array}
$$

Solving Eqs. (1) and (2)

$$
F_{A C}=0.7143 P \quad F_{A B}=0.6061 P
$$

Average Normal Stress: Assuming failure of wire $A B$,

$$
\begin{aligned}
\sigma_{\text {allow }}=\frac{F_{A B}}{A_{A B}} ; \quad 180\left(10^{6}\right) & =\frac{0.6061 P}{\frac{\pi}{4}\left(0.005^{2}\right)} \\
P & =5.831\left(10^{3}\right) \mathrm{N}=5.83 \mathrm{kN}
\end{aligned}
$$

Assume the failure of wire $A C$,

$$
\begin{aligned}
& \sigma_{\text {allow }}=\frac{F_{A C}}{A_{A C}} ; \quad 180\left(10^{6}\right)=\frac{0.7143 P}{\frac{\pi}{4}\left(0.006^{2}\right)} \\
& P=7.125\left(10^{3}\right) \mathrm{N}=7.13 \mathrm{kN}
\end{aligned}
$$

Choose the smaller of the two values of P,

$$
P=5.83 \mathrm{kN}
$$

Ans.

Ans:
$P=5.83 \mathrm{kN}$

*1-80.

The cotter is used to hold the two rods together. Determine the smallest thickness t of the cotter and the smallest diameter d of the rods. All parts are made of steel for which the failure normal stress is $\sigma_{\text {fail }}=500 \mathrm{MPa}$ and the failure shear stress is $\tau_{\text {fail }}=375 \mathrm{MPa}$. Use a factor of safety of $(\text { F.S. })_{t}=2.50$ in tension and (F.S. $)_{s}=1.75$ in shear.

SOLUTION

Allowable Normal Stress: Design of rod size

$$
\begin{aligned}
\sigma_{\text {allow }}=\frac{\sigma_{\text {fail }}}{\text { F.S }}=\frac{P}{A} ; \quad \frac{500\left(10^{6}\right)}{2.5}=\frac{30\left(10^{3}\right)}{\frac{\pi}{4} d^{2}} \\
d=0.01382 \mathrm{~m}=13.8 \mathrm{~mm}
\end{aligned}
$$

Allowable Shear Stress: Design of cotter size.

$$
\begin{array}{r}
\tau_{\text {allow }}=\frac{\tau_{\text {fail }}}{\text { F.S }}=\frac{V}{A} ; \quad \frac{375\left(10^{6}\right)}{1.75}=\frac{15.0\left(10^{3}\right)}{(0.01) t} \\
t=0.0070 \mathrm{~m}=7.00 \mathrm{~mm}
\end{array}
$$

Ans.

Ans:

$d=13.8 \mathrm{~mm}$,
$t=7.00 \mathrm{~mm}$

1-81.

Determine the required diameter of the pins at A and B if the allowable shear stress for the material is $\tau_{\text {allow }}=100 \mathrm{MPa}$. Both pins are subjected to double shear.

SOLUTION

Support Reactions: Member $B C$ is a two force member.
$\varsigma+\Sigma M_{A}=0 ; \quad F_{B C} \sin 45^{\circ}(3)-6(1.5)=0$
$F_{B C}=4.243 \mathrm{kN}$
$+\uparrow \Sigma F_{y}=0 ; \quad A_{y}+4.243 \sin 45^{\circ}-6=0$

$$
A_{y}=3.00 \mathrm{kN}
$$

$\pm \Sigma F_{x}=0 ;$

$$
\begin{gathered}
A_{x}-4.243 \cos 45^{\circ}=0 \\
A_{x}=3.00 \mathrm{kN}
\end{gathered}
$$

Allowable Shear Stress: Pin A and pin B are subjected to double shear.

$F_{A}=\sqrt{3.00^{2}+3.00^{2}}=4.243 \mathrm{kN}$ and
$F_{B}=F_{B C}=4.243 \mathrm{kN}$.
Therefore,
$V_{A}=V_{B}=\frac{4.243}{2}=2.1215 \mathrm{kN}$

Ans.

Ans:

$d_{A}=d_{B}=5.20 \mathrm{~mm}$

1-82.

The steel pipe is supported on the circular base plate and concrete pedestal. If the thickness of the pipe is $t=5 \mathrm{~mm}$ and the base plate has a radius of 150 mm , determine the factors of safety against failure of the steel and concrete. The applied force is 500 kN , and the normal failure stresses for steel and concrete are $\left(\sigma_{\text {fail }}\right)_{\text {st }}=350 \mathrm{MPa}$ and $\left(\sigma_{\text {fail }}\right)_{\text {con }}=25 \mathrm{MPa}$, respectively.

SOLUTION

Average Normal and Bearing Stress: The cross-sectional area of the steel pipe and the bearing area of the concrete pedestal are $A_{\mathrm{st}}=\pi\left(0.1^{2}-0.095^{2}\right)=$ $0.975\left(10^{-3}\right) \pi \mathrm{m}^{2}$ and $\left(A_{\text {con }}\right)_{\mathrm{b}}=\pi\left(0.15^{2}\right)=0.0225 \pi \mathrm{~m}^{2}$. We have

$$
\begin{aligned}
& \left(\sigma_{\mathrm{avg}}\right)_{\mathrm{st}}=\frac{P}{A_{\mathrm{st}}}=\frac{500\left(10^{3}\right)}{0.975\left(10^{-3}\right) \pi}=163.24 \mathrm{MPa} \\
& \left(\sigma_{\mathrm{avg}}\right)_{\mathrm{con}}=\frac{P}{\left(A_{\mathrm{con}}\right)_{\mathrm{b}}}=\frac{500\left(10^{3}\right)}{0.0225 \pi}=7.074 \mathrm{MPa}
\end{aligned}
$$

Thus, the factor of safety against failure of the steel pipe and concrete pedestal are

$$
\begin{aligned}
& (\text { F.S. })_{\mathrm{st}}=\frac{\left(\sigma_{\text {fail }}\right)_{\mathrm{st}}}{\left(\sigma_{\text {avg }}\right)_{\mathrm{st}}}=\frac{350}{163.24}=2.14 \\
& (\text { F.S. })_{\mathrm{con}}=\frac{\left(\sigma_{\text {fail }}\right)_{\mathrm{con}}}{\left(\sigma_{\text {avg }}\right)_{\mathrm{con}}}=\frac{25}{7.074}=3.53
\end{aligned}
$$

Ans.

Ans.

Ans:
$(\text { F.S. })_{s t}=2.14,(\text { F.S. })_{\text {con }}=3.53$

1-83.

The boom is supported by the winch cable that has a diameter of 0.25 in . and an allowable normal stress of $\sigma_{\text {allow }}=24 \mathrm{ksi}$. Determine the greatest weight of the crate that can be supported without causing the cable to fail if $\phi=30^{\circ}$. Neglect the size of the winch.

SOLUTION

Normal Force: Analyzing the equilibrium of joint B, Fig. a,

$$
\begin{array}{lll}
+\uparrow \Sigma F_{y}=0 ; & F_{A B} \sin 30^{\circ}-W=0 & F_{A B}=2.00 \mathrm{~W} \\
\xrightarrow{+} \Sigma F_{x}=0 ; & 2.00 W \cos 30^{\circ}-T=0 & T=1.7321 W
\end{array}
$$

Average Normal Stress:

$$
\begin{aligned}
\sigma_{\text {allow }}=\frac{T}{A} ; \quad 24\left(10^{3}\right) & =\frac{1.7321 \mathrm{~W}}{\frac{\pi}{4}\left(0.25^{2}\right)} \\
W & =680.17 \mathrm{lb}=680 \mathrm{lb}
\end{aligned}
$$

Ans.

*1-84.

The boom is supported by the winch cable that has an allowable normal stress of $\sigma_{\text {allow }}=24 \mathrm{ksi}$. If it supports the 5000 lb crate when $\phi=20^{\circ}$, determine the smallest diameter of the cable to the nearest $\frac{1}{16} \mathrm{in}$.

SOLUTION

Normal Force: Consider the equilibrium of joint B, Fig. a,
$+\uparrow \Sigma F_{y}=0 ; \quad F_{A B} \sin \phi-5000=0 \quad F_{A B}=\frac{5000}{\sin \phi}$
$\xrightarrow{+} \Sigma F_{x}=0 ; \quad\left(\frac{5000}{\sin \phi}\right) \cos \phi-T=0 \quad T=5000 \cot \phi$
When $\phi=20^{\circ}$, the design value for T is

$$
T=5000 \cot 20^{\circ}=13.737\left(10^{3}\right) \mathrm{lb}=13.737 \mathrm{kip}
$$

Average Normal Stress:

$$
\begin{aligned}
\sigma_{\text {allow }}=\frac{T}{A} ; \quad 24 & =\frac{13.737}{\frac{\pi}{4} d^{2}} \\
d & =0.8537 \mathrm{in.} \\
\text { Use } d & =\frac{7}{8} \mathrm{in.}
\end{aligned}
$$

Ans.

Ans:
Use $d=\frac{7}{8}$ in.

1-85.

The assembly consists of three disks A, B, and C that are used to support the load of 140 kN . Determine the smallest diameter d_{1} of the top disk, the largest diameter d_{2} of the opening, and the largest diameter d_{3} of the hole in the bottom disk. The allowable bearing stress for the material is $\left(\sigma_{b}\right)_{\text {allow }}=350 \mathrm{MPa}$ and allowable shear stress is $\tau_{\text {allow }}=125 \mathrm{MPa}$.

SOLUTION

Allowable Shear Stress: Assume shear failure for disk C.

$$
\begin{gathered}
\tau_{\text {allow }}=\frac{V}{A} ; \quad 125\left(10^{6}\right)=\frac{140\left(10^{3}\right)}{\pi d_{2}(0.01)} \\
d_{2}=0.03565 \mathrm{~m}=35.7 \mathrm{~mm}
\end{gathered}
$$

Ans.

Allowable Bearing Stress: Assume bearing failure for disk C.

$$
\begin{gathered}
\left(\sigma_{b}\right)_{\text {allow }}=\frac{P}{A} ; \quad 350\left(10^{6}\right)=\frac{140\left(10^{3}\right)}{\frac{\pi}{4}\left(0.03565^{2}-d_{3}^{2}\right)} \\
d_{3}=0.02760 \mathrm{~m}=27.6 \mathrm{~mm}
\end{gathered}
$$

Allowable Bearing Stress: Assume bearing failure for disk B.

$$
\begin{gathered}
\left(\sigma_{b}\right)_{\text {allow }}=\frac{P}{A} ; \quad 350\left(10^{6}\right)=\frac{140\left(10^{3}\right)}{\frac{\pi}{4} d_{1}^{2}} \\
d_{1}=0.02257 \mathrm{~m}=22.6 \mathrm{~mm}
\end{gathered}
$$

Since $d_{3}=27.6 \mathrm{~mm}>d_{1}=22.6 \mathrm{~mm}$, disk B might fail due to shear.
$\tau=\frac{V}{A}=\frac{140\left(10^{3}\right)}{\pi(0.02257)(0.02)}=98.7 \mathrm{MPa}<\tau_{\text {allow }}=125 \mathrm{MPa}(\boldsymbol{O} . \boldsymbol{K}!)$
Therefore

$$
d_{1}=22.6 \mathrm{~mm}
$$

Ans:

$d_{2}=35.7 \mathrm{~mm}$,
$d_{3}=27.6 \mathrm{~mm}$,
$d_{1}=22.6 \mathrm{~mm}$

1-86.

The two aluminum rods support the vertical force of $P=20 \mathrm{kN}$. Determine their required diameters if the allowable tensile stress for the aluminum is $\sigma_{\text {allow }}=150 \mathrm{MPa}$.

SOLUTION

$$
\begin{array}{lll}
+\uparrow \Sigma F_{y}=0 ; & F_{A B} \sin 45^{\circ}-20=0 ; & F_{A B}=28.284 \mathrm{kN} \\
\xrightarrow[\rightarrow]{ } \Sigma F_{x}=0 ; & 28.284 \cos 45^{\circ}-F_{A C}=0 ; & F_{A C}=20.0 \mathrm{kN}
\end{array}
$$

For $\operatorname{rod} A B$:
$\sigma_{\text {allow }}=\frac{F_{A B}}{A_{A B}} ; \quad 150\left(10^{6}\right)=\frac{28.284\left(10^{3}\right)}{\frac{\pi}{4} d_{A B}^{2}}$
$d_{A B}=0.0155 \mathrm{~m}=15.5 \mathrm{~mm}$
Ans.

For $\operatorname{rod} A C$:
$\sigma_{\text {allow }}=\frac{F_{A C}}{A_{A C}} ; \quad 150\left(10^{6}\right)=\frac{20.0\left(10^{3}\right)}{\frac{\pi}{4} d_{A C}^{2}}$
$d_{A C}=0.0130 \mathrm{~m}=13.0 \mathrm{~mm}$

Ans.

Ans:
$d_{A B}=15.5 \mathrm{~mm}, d_{A C}=13.0 \mathrm{~mm}$

1-87.

The two aluminum rods $A B$ and $A C$ have diameters of 10 mm and 8 mm , respectively. Determine the largest vertical force \mathbf{P} that can be supported. The allowable tensile stress for the aluminum is $\sigma_{\text {allow }}=150 \mathrm{MPa}$.

SOLUTION

$+\uparrow \Sigma F_{y}=0 ;$
$F_{A B} \sin 45^{\circ}-P=0 ;$
$P=F_{A B} \sin 45^{\circ}$
$\xrightarrow{+} \Sigma F_{x}=0 ;$
$F_{A B} \cos 45^{\circ}-F_{A C}=0$

Assume failure of $\operatorname{rod} A B$:
$\sigma_{\text {allow }}=\frac{F_{A B}}{A_{A B}} ; \quad 150\left(10^{6}\right)=\frac{F_{A B}}{\frac{\pi}{4}(0.01)^{2}}$
$F_{A B}=11.78 \mathrm{kN}$
(2)
(1)

From Eq. (1),
$P=8.33 \mathrm{kN}$

Assume failure of rod $A C$:
$\sigma_{\text {allow }}=\frac{F_{A C}}{A_{A C}} ; \quad 150\left(10^{6}\right)=\frac{F_{A C}}{\frac{\pi}{4}(0.008)^{2}}$
$F_{A C}=7.540 \mathrm{kN}$
Solving Eqs. (1) and (2) yields:
$F_{A B}=10.66 \mathrm{kN} ; \quad P=7.54 \mathrm{kN}$
Choose the smallest value
$P=7.54 \mathrm{kN}$
Ans.

Ans:
$P=7.54 \mathrm{kN}$

*1-88.

Determine the required minimum thickness t of member $A B$ and edge distance b of the frame if $P=9 \mathrm{kip}$ and the factor of safety against failure is 2 . The wood has a normal failure stress of $\sigma_{\text {fail }}=6 \mathrm{ksi}$, and a shear failure stress of $\tau_{\text {fail }}=1.5 \mathrm{ksi}$.

SOLUTION

Internal Loadings: The normal force developed in member $A B$ can be determined by considering the equilibrium of joint A, Fig. a.

$$
\begin{array}{lll}
+\Sigma F_{x}=0 ; & F_{A B} \cos 30^{\circ}-F_{A C} \cos 30^{\circ}=0 & F_{A C}=F_{A B} \\
+\uparrow \Sigma F_{y}=0 ; & 2 F_{A B} \sin 30^{\circ}-9=0 & F_{A B}=9 \mathrm{kip}
\end{array}
$$

Subsequently, the horizontal component of the force acting on joint B can be determined by analyzing the equilibrium of member $A B$, Fig. b.
$\xrightarrow{+} \Sigma F_{x}=0 ;$
$\left(F_{B}\right)_{x}-9 \cos 30^{\circ}=0$
$\left(F_{B}\right)_{x}=7.794 \mathrm{kip}$

Referring to the free-body diagram shown in Fig. c, the shear force developed on the shear plane $a-a$ is
$\xrightarrow{+} \Sigma F_{x}=0 ; \quad V_{a-a}-7.794=0$

Allowable Normal Stress:

$$
\begin{aligned}
& \sigma_{\text {allow }}=\frac{\sigma_{\text {fail }}}{\text { F.S. }}=\frac{6}{2}=3 \mathrm{ksi} \\
& \tau_{\text {allow }}=\frac{\tau_{\text {fail }}}{\text { F.S. }}=\frac{1.5}{2}=0.75 \mathrm{ksi}
\end{aligned}
$$

Using these results,

$$
\begin{array}{ll}
\sigma_{\text {allow }}=\frac{F_{A B}}{A_{A B}} ; & 3\left(10^{3}\right)=\frac{9\left(10^{3}\right)}{3 t} \\
& t=1 \mathrm{in} . \\
\tau_{\text {allow }}=\frac{V_{a-a}}{A_{a-a}} ; & 0.75\left(10^{3}\right)=\frac{7.794\left(10^{3}\right)}{3 b} \\
& b=3.46 \mathrm{in} .
\end{array}
$$

Ans:

$t=1 \mathrm{in} ., b=3.46 \mathrm{in}$.

1-89.

Determine the maximum allowable load \mathbf{P} that can be safely supported by the frame if $t=1.25 \mathrm{in}$. and $b=3.5 \mathrm{in}$. The wood has a normal failure stress of $\sigma_{\text {fail }}=6 \mathrm{ksi}$, and a shear failure stress of $\tau_{\text {fail }}=1.5 \mathrm{ksi}$. Use a factor of safety against failure of 2 .

SOLUTION

Internal Loadings: The normal force developed in member $A B$ can be determined by considering the equilibrium of joint A, Fig. a.
$\xrightarrow{ \pm} \Sigma F_{x}=0 ; \quad F_{A B} \cos 30^{\circ}-F_{A C} \cos 30^{\circ}=0 \quad F_{A C}=F_{A B}$
$+\uparrow \Sigma F_{y}=0 ;$

$$
2 F_{A B} \sin 30^{\circ}-9=0
$$

$$
F_{A B}=P
$$

Subsequently, the horizontal component of the force acting on joint B can be determined by analyzing the equilibrium of member $A B$, Fig. b.
$\xrightarrow{+} \Sigma F_{x}=0 ;$
$\left(F_{B}\right)_{x}-P \cos 30^{\circ}=0$
$\left(F_{B}\right)_{x}=0.8660 P$

Referring to the free-body diagram shown in Fig. c, the shear force developed on the shear plane $a-a$ is

$$
\xrightarrow{+} \Sigma F_{x}=0 ; \quad V_{a-a}-0.8660 P=0 \quad V_{a-a}=0.8660 P
$$

Allowable Normal and Shear Stress:

$$
\begin{aligned}
& \sigma_{\text {allow }}=\frac{\sigma_{\text {fail }}}{\text { F.S. }}=\frac{6}{2}=3 \mathrm{ksi} \\
& \tau_{\text {allow }}=\frac{\tau_{\text {fail }}}{\text { F.S. }}=\frac{1.5}{2}=0.75 \mathrm{ksi}
\end{aligned}
$$

Using these results,

$$
\begin{array}{ll}
\sigma_{\text {allow }}=\frac{F_{A B}}{A_{A B}} ; & 3\left(10^{3}\right)=\frac{P}{3(1.25)} \\
& P=11250 \mathrm{lb}=11.25 \mathrm{kip} \\
\tau_{\text {allow }}=\frac{V_{a-a}}{A_{a-a}} ; & 0.75\left(10^{3}\right)=\frac{0.8660 P}{3(3.5)} \\
& P=9093.27 \mathrm{lb}=9.09 \mathrm{kip} \text { (controls) }
\end{array}
$$

Ans.

$$
\begin{equation*}
\left(\bar{F}_{\bar{B}}\right)_{y} \tag{b}
\end{equation*}
$$

Ans:

$P=9.09$ kip

$1-90$.

The compound wooden beam is connected together by a bolt at B. Assuming that the connections at A, B, C, and D exert only vertical forces on the beam, determine the required diameter of the bolt at B and the required outer diameter of its washers if the allowable tensile stress for the bolt is $\left(\sigma_{t}\right)_{\text {allow }}=150 \mathrm{MPa}$ and the allowable bearing stress for the wood is $\left(\sigma_{b}\right)_{\text {allow }}=28 \mathrm{MPa}$. Assume that the hole in the washers has the same diameter as the bolt.

SOLUTION

From FBD (a):
$\zeta+\Sigma M_{D}=0 ; \quad F_{B}(4.5)+1.5(3)+2(1.5)-F_{C}(6)=0$

$$
4.5 F_{B}-6 F_{C}=-7.5
$$

(1)

From FBD (b):

$$
\begin{array}{r}
C+\Sigma M_{A}=0 ; \quad F_{B}(5.5)-F_{C}(4)-3(2)=0 \\
5.5 F_{B}-4 F_{C}=6 \tag{2}
\end{array}
$$

Solving Eqs. (1) and (2) yields
$F_{B}=4.40 \mathrm{kN} ; \quad F_{C}=4.55 \mathrm{kN}$

(b)

For bolt:
$\sigma_{\text {allow }}=150\left(10^{6}\right)=\frac{4.40\left(10^{3}\right)}{\frac{\pi}{4}\left(d_{B}\right)^{2}}$

$d_{B}=0.00611 \mathrm{~m}$

$$
=6.11 \mathrm{~mm}
$$

Ans.

For washer:
$\sigma_{\text {allow }}=28\left(10^{4}\right)=\frac{4.40\left(10^{3}\right)}{\frac{\pi}{4}\left(d_{w}^{2}-0.00611^{2}\right)}$
$d_{w}=0.0154 \mathrm{~m}=15.4 \mathrm{~mm}$

Ans.

1-91.

The hanger is supported using the rectangular pin. Determine the magnitude of the allowable suspended load \mathbf{P} if the allowable bearing stress is $\left(\sigma_{b}\right)_{\text {allow }}=220 \mathrm{MPa}$, the allowable tensile stress is $\left(\sigma_{t}\right)_{\text {allow }}=150 \mathrm{MPa}$, and the allowable shear stress is $\tau_{\text {allow }}=130 \mathrm{MPa}$. Take $t=6 \mathrm{~mm}$, $a=5 \mathrm{~mm}$ and $b=25 \mathrm{~mm}$.

SOLUTION

Allowable Normal Stress: For the hanger

$$
\begin{aligned}
\left(\sigma_{t}\right)_{\text {allow }}=\frac{P}{A} ; \quad 150\left(10^{6}\right) & =\frac{P}{(0.075)(0.006)} \\
P & =67.5 \mathrm{kN}
\end{aligned}
$$

Allowable Shear Stress: The pin is subjected to double shear. Therefore, $V=\frac{P}{2}$

$$
\begin{aligned}
\tau_{\text {allow }}=\frac{V}{A} ; \quad 130\left(10^{6}\right) & =\frac{P / 2}{(0.01)(0.025)} \\
P & =65.0 \mathrm{kN}
\end{aligned}
$$

Allowable Bearing Stress: For the bearing area

$$
\begin{aligned}
\left(\sigma_{b}\right)_{\text {allow }}=\frac{P}{A} ; \quad 220\left(10^{6}\right) & =\frac{P / 2}{(0.005)(0.025)} \\
P & =55.0 \mathrm{kN}(\text { Controls }!)
\end{aligned}
$$

Ans.

*1-92.

The hanger is supported using the rectangular pin. Determine the required thickness t of the hanger, and dimensions a and b if the suspended load is $P=60 \mathrm{kN}$. The allowable tensile stress is $\left(\sigma_{t}\right)_{\text {allow }}=150 \mathrm{MPa}$, the allowable bearing stress is $\left(\sigma_{b}\right)_{\text {allow }}=290 \mathrm{MPa}$, and the allowable shear stress is $\tau_{\text {allow }}=125 \mathrm{MPa}$.

SOLUTION

Allowable Normal Stress: For the hanger

$$
\begin{aligned}
& \left(\sigma_{t}\right)_{\text {allow }}=\frac{P}{A} ; \quad 150\left(10^{6}\right)=\frac{60\left(10^{3}\right)}{(0.075) t} \\
& t=0.005333 \mathrm{~m}=5.33 \mathrm{~mm}
\end{aligned}
$$

Allowable Shear Stress: For the pin

$$
\begin{aligned}
\tau_{\text {allow }}=\frac{V}{A} ; \quad 125\left(10^{6}\right) & =\frac{30\left(10^{3}\right)}{(0.01) b} \\
b & =0.0240 \mathrm{~m}=24.0 \mathrm{~mm}
\end{aligned}
$$

Allowable Bearing Stress: For the bearing area

$$
\begin{aligned}
& \left(\sigma_{b}\right)_{\text {allow }}=\frac{P}{A} ; \quad 290\left(10^{6}\right)=\frac{30\left(10^{3}\right)}{(0.0240) a} \\
& a=0.00431 \mathrm{~m}=4.31 \mathrm{~mm}
\end{aligned}
$$

Ans.

Ans.

Ans.

1-93.

The rods $A B$ and $C D$ are made of steel. Determine their smallest diameter so that they can support the dead loads shown. The beam is assumed to be pin connected at A and C. Use the LRFD method, where the resistance factor for steel in tension is $\phi=0.9$, and the dead load factor is $\gamma_{D}=1.4$. The failure stress is $\sigma_{\text {fail }}=345 \mathrm{MPa}$.

SOLUTION

Support Reactions:

$$
\begin{array}{cc}
\varsigma+\Sigma M_{A}=0 ; & F_{C D}(10)-5(7)-6(4)-4(2)=0 \\
& F_{C D}=6.70 \mathrm{kN} \\
\varsigma+\Sigma M_{C}=0 ; & 4(8)+6(6)+5(3)-F_{A B}(10)=0 \\
& F_{A B}=8.30 \mathrm{kN}
\end{array}
$$

Factored Loads:

$$
\begin{aligned}
& F_{C D}=1.4(6.70)=9.38 \mathrm{kN} \\
& F_{A B}=1.4(8.30)=11.62 \mathrm{kN}
\end{aligned}
$$

For $\operatorname{rod} \boldsymbol{A B}$

$0.9\left[345\left(10^{6}\right)\right] \pi\left(\frac{d_{A B}}{2}\right)^{2}=11.62\left(10^{3}\right)$

$$
d_{A B}=0.00690 \mathrm{~m}=6.90 \mathrm{~mm}
$$

Ans.

For rod CD

$$
0.9\left[345\left(10^{6}\right)\right] \pi\left(\frac{d_{C D}}{2}\right)^{2}=9.38\left(10^{3}\right)
$$

$$
d_{C D}=0.00620 \mathrm{~m}=6.20 \mathrm{~mm}
$$

Ans.

Ans:

$d_{A B}=6.90 \mathrm{~mm}, d_{C D}=6.20 \mathrm{~mm}$

1-94.

The aluminum bracket A is used to support the centrally applied load of 8 kip . If it has a thickness of 0.5 in ., determine the smallest height h in order to prevent a shear failure. The failure shear stress is $\tau_{\text {fail }}=23 \mathrm{ksi}$. Use a factor of safety for shear of F.S. $=2.5$.

SOLUTION

Equation of Equilibrium:

$$
+\uparrow \Sigma F_{y}=0 ; \quad V-8=0 \quad V=8.00 \mathrm{kip}
$$

Allowable Shear Stress: Design of the support size

$$
\begin{aligned}
\tau_{\text {allow }}=\frac{\tau_{\text {fail }}}{\text { F.S }}=\frac{V}{A} ; \quad \frac{23\left(10^{3}\right)}{2.5} & =\frac{8.00\left(10^{3}\right)}{h(0.5)} \\
h & =1.74 \mathrm{in.}
\end{aligned}
$$

Ans.

Ans:
$h=1.74 \mathrm{in}$.

1-95.

If the allowable tensile stress for the bar is $\left(\sigma_{t}\right)_{\text {allow }}=21 \mathrm{ksi}$, and the allowable shear stress for the pin is $\tau_{\text {allow }}=12 \mathrm{ksi}$, determine the diameter of the pin so that the load P will be a maximum. What is this load? Assume the hole in the bar has the same diameter d as the pin. Take $t=\frac{1}{4} \mathrm{in}$. and $w=2 \mathrm{in}$.

SOLUTION

Allowable Normal Stress: The effective cross-sectional area A^{\prime} for the bar must be considered here by taking into account the reduction in cross sectional area introduced by the hole. Here $A^{\prime}=(2-d)\left(\frac{1}{4}\right)$.

$$
\begin{equation*}
\left(\sigma_{t}\right)_{\text {allow }}=\frac{P}{A^{\prime}} ; \quad 21\left(10^{3}\right)=\frac{P_{\max }}{(2-d)\left(\frac{1}{4}\right)} \tag{1}
\end{equation*}
$$

Allowable Shear Stress: The pin is subjected to double shear and therefore, $V=\frac{P_{\max }}{2}$

$$
\begin{equation*}
\tau_{\text {allow }}=\frac{V}{A} ; \quad 12\left(10^{3}\right)=\frac{P_{\max } / 2}{\frac{\pi}{4} d^{2}} \tag{2}
\end{equation*}
$$

Solving Eq. (1) and (2) yields:

$$
\begin{aligned}
d & =0.620 \mathrm{in} . \\
P_{\max } & =7.25 \mathrm{kip}
\end{aligned}
$$

Ans.
Ans.

Ans:
$d=0.620 \mathrm{in}$, $P_{\text {max }}=7.25$ kip

*1-96.

The bar is connected to the support using a pin having a diameter of $d=1 \mathrm{in}$. If the allowable tensile stress for the bar is $\left(\sigma_{t}\right)_{\text {allow }}=20 \mathrm{ksi}$, and the allowable bearing stress between the pin and the bar is $\left(\sigma_{b}\right)_{\text {allow }}=30 \mathrm{ksi}$, determine the dimensions w and t so that the gross area of the cross section is $w t=2 \mathrm{in}^{2}$ and the load P is a maximum. What is this maximum load? Assume the hole in the bar has the same diameter as the pin.

SOLUTION

Allowable Normal Stress: The effective cross-sectional area A^{\prime} for the bar must be considered here by taking into account the reduction in cross-sectional area introduced by the hole. Here $A^{\prime}=(w-1) t=w t-t=(2-t) \mathrm{in}^{2}$ where $w t=2 \mathrm{in}^{2}$.

$$
\begin{equation*}
\left(\sigma_{t}\right)_{\text {allow }}=\frac{P}{A^{\prime}} ; \quad 20\left(10^{3}\right)=\frac{P_{\max }}{2-t} \tag{1}
\end{equation*}
$$

Allowable Bearing Stress: The projected area

$$
\begin{gathered}
A_{p}=(1) t=t \mathrm{in}^{2} . \\
\left(\sigma_{b}\right)_{\text {allow }}=\frac{P}{A_{p}} ; \quad 30\left(10^{3}\right)=\frac{P_{\max }}{t}
\end{gathered}
$$

(2)

Solving Eq. (1) and (2) yields:

$$
\begin{aligned}
t & =0.800 \mathrm{in} . \\
P_{\max } & =24.0 \mathrm{kip}
\end{aligned}
$$

Ans.
Ans.
And

$$
w=2.50 \mathrm{in} .
$$

R1-1.

The beam $A B$ is pin supported at A and supported by a cable $B C$. A separate cable $C G$ is used to hold up the frame. If $A B$ weighs $120 \mathrm{lb} / \mathrm{ft}$ and the column $F C$ has a weight of $180 \mathrm{lb} / \mathrm{ft}$, determine the resultant internal loadings acting on cross sections located at points D and E.

SOLUTION

Segment $A D$:

$$
\begin{array}{lll}
\xrightarrow{+} \Sigma F_{x}=0 ; & N_{D}+2.16=0 ; & N_{D}=-2.16 \mathrm{kip} \\
+\downarrow \Sigma F_{y}=0 ; & V_{D}+0.72-0.72=0 ; & V_{D}=0 \\
\varsigma+\Sigma M_{D}=0 ; & M_{D}-0.72(3)=0 ; & M_{D}=2.16 \mathrm{kip} \cdot \mathrm{ft}
\end{array}
$$

Segment $F E$:

$$
\begin{array}{lll}
\pm \Sigma F_{x}=0 ; & V_{E}-0.54=0 ; & V_{E}=0.540 \mathrm{kip} \\
+\downarrow \Sigma F_{y}=0 ; & N_{E}+0.72-5.04=0 ; & N_{E}=4.32 \mathrm{kip} \\
\varsigma+\Sigma M_{E}=0 ; & -M_{E}+0.54(4)=0 ; & M_{E}=2.16 \mathrm{kip} \cdot \mathrm{ft}
\end{array}
$$

Ans.
Ans.

Ans.

Ans.

Ans.
Ans.

Ans:
$N_{D}=-2.16$ kip, $V_{D}=0, M_{D}=2.16 \mathrm{kip} \cdot \mathrm{ft}$, $V_{E}=0.540 \mathrm{kip}, N_{E}=4.32 \mathrm{kip}, M_{E}=2.16 \mathrm{kip} \cdot \mathrm{ft}$

R1-2.

The long bolt passes through the $30-\mathrm{mm}$-thick plate. If the force in the bolt shank is 8 kN , determine the average normal stress in the shank, the average shear stress along the cylindrical area of the plate defined by the section lines $a-a$, and the average shear stress in the bolt head along the cylindrical area defined by the section lines $b-b$.

SOLUTION

$\sigma_{s}=\frac{P}{A}=\frac{8\left(10^{3}\right)}{\frac{\pi}{4}(0.007)^{2}}=208 \mathrm{MPa}$
$\left(\tau_{\text {avg }}\right)_{a}=\frac{V}{A}=\frac{8\left(10^{3}\right)}{\pi(0.018)(0.030)}=4.72 \mathrm{MPa}$
$\left(\tau_{\text {avg }}\right)_{b}=\frac{V}{A}=\frac{8\left(10^{3}\right)}{\pi(0.007)(0.008)}=45.5 \mathrm{MPa}$

Ans.

Ans.

Ans.

Ans:
$\sigma_{s}=208 \mathrm{MPa},\left(\tau_{\text {avg }}\right)_{a}=4.72 \mathrm{MPa}$, $\left(\tau_{\text {avg }}\right)_{b}=45.5 \mathrm{MPa}$

R1-3.

Determine the required thickness of member $B C$ to the nearest $\frac{1}{16}$ in., and the diameter of the pins at A and B if the allowable normal stress for member $B C$ is $\sigma_{\text {allow }}=29 \mathrm{ksi}$ and the allowable shear stress for the pins is $\tau_{\text {allow }}=10 \mathrm{ksi}$.

SOLUTION

Referring to the FBD of member $A B$, Fig. a,
$\varsigma+\Sigma M_{A}=0 ; \quad 2(8)(4)-F_{B C} \sin 60^{\circ}(8)=0 \quad F_{B C}=9.238 \mathrm{kip}$
$\xrightarrow{+} \Sigma F_{x}=0 ; \quad 9.238 \cos 60^{\circ}-A_{x}=0 \quad A_{x}=4.619 \mathrm{kip}$
$+\uparrow \Sigma F_{y}=0 ; \quad 9.238 \sin 60^{\circ}-2(8)+A_{y}=0 \quad A_{y}=8.00 \mathrm{kip}$
Thus, the force acting on $\operatorname{pin} A$ is
$F_{A}=\sqrt{A_{x}^{2}+A_{y}^{2}}=\sqrt{4.619^{2}+8.00^{2}}=9.238 \mathrm{kip}$
Pin A is subjected to single shear, Fig. c, while pin B is subjected to double shear, Fig. b.
$V_{A}=F_{A}=9.238 \mathrm{kip} \quad V_{B}=\frac{F_{B C}}{2}=\frac{9.238}{2}=4.619 \mathrm{kip}$
For member $B C$

$$
\sigma_{\text {allow }}=\frac{F_{B C}}{A_{B C}} ; \quad 29=\frac{9.238}{1.5(t)} \quad t=0.2124 \mathrm{in} .
$$

$$
\text { Use } t=\frac{1}{4} \mathrm{in} .
$$

Ans.
For pin A,
$\tau_{\text {allow }}=\frac{V_{A}}{A_{A}} ; \quad 10=\frac{9.238}{\frac{\pi}{4} d_{A}^{2}} \quad d_{A}=1.085$ in

For pin B,

$$
\tau_{\text {allow }}=\frac{V_{B}}{A_{B}} ; \quad 10=\frac{4.619}{\frac{\pi}{4} d_{B}^{2}} \quad d_{B}=0.7669 \mathrm{in} .
$$

Use $d_{B}=\frac{13}{16} \mathrm{in}$.

$$
\begin{array}{r}
\tau_{\text {allow }} \overline{A_{A}}, \quad 10=\frac{\pi}{4} d_{A}^{2} \\
\text { Use } d_{A}=1 \frac{1}{8} \mathrm{in.}
\end{array}
$$

Ans.

(b)

Ans.

Ans:
Use $t=\frac{1}{4}$ in., $d_{A}=1 \frac{1}{8}$ in., $d_{B}=\frac{13}{16} \mathrm{in}$.

*R1-4.

The circular punch B exerts a force of 2 kN on the top of the plate A. Determine the average shear stress in the plate due to this loading.

SOLUTION

Average Shear Stress: The shear area $A=\pi(0.004)(0.002)=8.00\left(10^{-6}\right) \pi \mathrm{m}^{2}$

$$
\tau_{\text {avg }}=\frac{V}{A}=\frac{2\left(10^{3}\right)}{8.00\left(10^{-6}\right) \pi}=79.6 \mathrm{MPa}
$$

Ans.

Ans:

$\tau_{\text {avg }}=79.6 \mathrm{MPa}$

R1-5.

Determine the average punching shear stress the circular shaft creates in the metal plate through section $A C$ and $B D$. Also, what is the average bearing stress developed on the surface of the plate under the shaft?

SOLUTION

Average Shear and Bearing Stress: The area of the shear plane and the bearing area on the punch are $A_{V}=\pi(0.05)(0.01)=0.5\left(10^{-3}\right) \pi \mathrm{m}^{2}$ and $A_{b}=$
 $\frac{\pi}{4}\left(0.12^{2}-0.06^{2}\right)=2.7\left(10^{-3}\right) \pi \mathrm{m}^{2}$. We obtain
$\tau_{\text {avg }}=\frac{P}{A_{V}}=\frac{40\left(10^{3}\right)}{0.5\left(10^{-3}\right) \pi}=25.5 \mathrm{MPa}$
Ans.
$\sigma_{b}=\frac{P}{A_{b}}=\frac{40\left(10^{3}\right)}{2.7\left(10^{-3}\right) \pi}=4.72 \mathrm{MPa}$
Ans.

Ans:

$\tau_{\text {avg }}=25.5 \mathrm{MPa}, \sigma_{b}=4.72 \mathrm{MPa}$

R1-6.

The 150 mm by 150 mm block of aluminum supports a compressive load of 6 kN . Determine the average normal and shear stress acting on the plane through section $a-a$. Show the results on a differential volume element located on the plane.

SOLUTION

Equation of Equilibrium:

$+\nearrow \Sigma F_{x}=0 ; \quad V_{a-a}-6 \cos 60^{\circ}=0$
$V_{a-a}=3.00 \mathrm{kN}$
$\Sigma+\Sigma F_{y}=0 ; \quad N_{a-a}-6 \sin 60^{\circ}=0 \quad N_{a-a}=5.196 \mathrm{kN}$

Average Normal Stress and Shear Stress: The cross sectional Area at section $a-a$ is
$A=\left(\frac{0.15}{\sin 60^{\circ}}\right)(0.15)=0.02598 \mathrm{~m}^{2}$.
$\sigma_{a-a}=\frac{N_{a-a}}{A}=\frac{5.196\left(10^{3}\right)}{0.02598}=200 \mathrm{kPa}$
$\tau_{a-a}=\frac{V_{a-a}}{A}=\frac{3.00\left(10^{3}\right)}{0.02598}=115 \mathrm{kPa}$

Ans.

Ans.

Ans:
$\sigma_{a-a}=200 \mathrm{kPa}, \tau_{a-a}=115 \mathrm{kPa}$

R1-7.

The yoke-and-rod connection is subjected to a tensile force of 5 kN . Determine the average normal stress in each rod and the average shear stress in the pin A between the members.

SOLUTION

For the 40-mm - dia. rod:
$\sigma_{40}=\frac{P}{A}=\frac{5\left(10^{3}\right)}{\frac{\pi}{4}(0.04)^{2}}=3.98 \mathrm{MPa}$
Ans.

For the 30 - mm - dia. rod:
$\sigma_{30}=\frac{V}{A}=\frac{5\left(10^{3}\right)}{\frac{\pi}{4}(0.03)^{2}}=7.07 \mathrm{MPa}$
Ans.

Average shear stress for pin A :
$\tau_{\text {avg }}=\frac{P}{A}=\frac{2.5\left(10^{3}\right)}{\frac{\pi}{4}(0.025)^{2}}=5.09 \mathrm{MPa}$

Ans.

Ans:

$$
\sigma_{40}=3.98 \mathrm{MPa}, \sigma_{30}=7.07 \mathrm{MPa},
$$

$$
\tau_{\text {avg }}=5.09 \mathrm{MPa}
$$

*R1-8.

The cable has a specific weight γ (weight/volume) and crosssectional area A. Assuming the sag s is small, so that the cable's length is approximately L and its weight can be distributed uniformly along the horizontal axis, determine the average normal stress in the cable at its lowest point C.

SOLUTION

Equation of Equilibrium:

$\varsigma+\Sigma M_{A}=0 ; \quad T s-\frac{\gamma A L}{2}\left(\frac{L}{4}\right)=0$

$$
T=\frac{\gamma A L^{2}}{8 s}
$$

Average Normal Stress:

$$
\sigma=\frac{T}{A}=\frac{\frac{\gamma A L^{2}}{8 s}}{A}=\frac{\gamma L^{2}}{8 s}
$$

Ans:

$\sigma=\frac{\gamma L^{2}}{8 s}$

[^0]: Ans:
 $N_{C}=-2.94 \mathrm{kN}$,
 $V_{C}=2.94 \mathrm{kN}$,
 $M_{C}=-1.47 \mathrm{kN} \cdot \mathrm{m}$

[^1]: Ans:
 $V_{B}=496 \mathrm{lb}$,
 $N_{B}=59.8 \mathrm{lb}$,
 $M_{B}=480 \mathrm{lb} \cdot \mathrm{ft}$,
 $N_{C}=495 \mathrm{lb}$,
 $V_{C}=70.7 \mathrm{lb}$, $M_{C}=1.59 \mathrm{kip} \cdot \mathrm{ft}$

[^2]: Ans:
 $\sigma_{A B}=333 \mathrm{MPa}$,
 $\sigma_{C D}=250 \mathrm{MPa}$

